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Abstract—Distributed Denial of Service (DDoS) constitutes a major threat against cloud systems owing to the large financial losses it

incurs. This motivated the security research community to investigate numerous detection techniques to limit such attack’s effects. Yet,

the existing solutions are still not mature enough to satisfy a cloud-dedicated detection system’s requirements since they overlook the

attacker’s wily strategies that exploit the cloud’s elastic and multi-tenant properties, and ignore the cloud system’s resources

constraints. Motivated by this fact, we propose a two-fold solution that allows, first, the hypervisor to establish credible trust

relationships toward guest Virtual Machines (VMs) by considering objective and subjective trust sources and employing Bayesian

inference to aggregate them. On top of the trust model, we design a trust-based maximin game between DDoS attackers trying to

minimize the cloud system’s detection and hypervisor trying to maximize this minimization under limited budget of resources. The

game solution guides the hypervisor to determine the optimal detection load distribution among VMs in real-time that maximizes DDoS

attacks’ detection. Experimental results reveal that our solution maximizes attacks’ detection, decreases false positives and negatives,

and minimizes CPU, memory and bandwidth consumption during DDoS attacks compared to the existing detection load distribution

techniques.

Index Terms—Detection load distribution, Distributed Denial of Service (DDoS), cloud computing, security, trust, game theory, virtualization

Ç

1 INTRODUCTION

CLOUD systems are widely exposed to various types of
security threats due to their multi-tenant nature that

allows multiple Virtual Machines (VMs) owned by different
(possibly malicious) clients to share a single physical infra-
structure. Distributed Denial of Service (DDoS) constitutes
one of the most widespread and painful attacks for both
cloud providers and clients. Recently published reports
reveal that a large number of well-known cloud providers,
including Amazon EC2 and Rackspace, faced in the recent
past years massive DDoS attacks resulting in financial losses
amounting to tens of thousands of dollars [1].

Problem Statement. Several Intrusion Detection Systems
(IDSs) [2], [3], [4], [5], [6], [7] have been advanced to identify
intrusions in cloud environments, where most of these sys-
tems are developed and improved from traditional detection
techniques used in non-cloud environments. Such systems
can be categorized into three main branches: Network-based,
host-based, and hypervisor-based systems. In network-based
IDSs, the incoming/outgoing network traffic along with the

packets’ content are monitored and analyzed to recognize
intrusions. Although such an approach might be effective in
capturing outsider attacks that occur at the network’s level, it
is ineffective however in detecting the insider attacks in
which attackers infiltrate into the internal cloud system. To
cope with this limitation, host-based IDSs propose to inte-
grate a monitoring agent inside each VM to monitor its
behavior and states (e.g., system calls) and be able hence to
recognize any abnormal behavior. This aids host-based IDSs
in capturing both insider and outsider attacks. Yet, the use of
such systems entail supplementary responsibilities for VMs’
owners in terms of managing the monitoring agents, which
disadvantages the adoption of host-based systems in a cloud
environment wherein a client might possess multiple VM
instances.

To alleviate these responsibilities, hypervisor-based IDSs
move the intrusion detection responsibilities from the VM’s
level to the cloud system’s level by placing the monitoring
agent at the hypervisor’s layer. This enables the hypervisor to
examine the VMs’ system metrics (e.g., CPU usage) directly
from the hosting infrastructure to recognize any malicious
behavior. However, such a process demands storing and ana-
lyzing a huge number of events from each single VM in real-
time, which entails significant storage and computational
overheads. The situation becomes even worse when a single
attack is being distributed across several VMs (as is the case in
DDoS attacks) since this requires analyzing and correlating
events from different VMs in order to identify one single
attack. Moreover, all of the network-based, host-based, and
hypervisor-based IDSs stop at the borders of monitoring and
analyzing events to identify intrusions. Thus, these systems
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consider the detection problem from the perspective of the
IDS only without accounting for the sophisticated strategies
of the attackers who strive to complicate their attacks to mini-
mize their detection chances. In summary, the main limita-
tions of the existing cloud-based detection systems can be
summarized by the following:

� The design of the existing detection systems
accounts only for the IDS agent’s perspective and
overlooks the attacker’s wily strategies. This gives
the attacker higher chances of exploiting the cloud’s
elastic and multi-tenant properties in order to com-
plicate the detection of the launched attacks.

� The cloud system’s resources (e.g., CPU) constraints
are ignored in the design of the existing detection
systems, which limits their efficiency in today’s
large-scale applications.

This raises the need for a resource-aware detection mech-
anism that can maximize the detection of DDoS attacks
under a limited amount of resources. In a preliminary ver-
sion of this work [8], we proposed an intelligent technique
that guides the cloud system on the optimal distribution of
detection load among VMs in such a way that maximizes
the detection of generic distributed attacks. This paper
builds on and extends our previous work by (1) considering
a concrete DDoS attack scenario in the formulation of the
problem and solution; (2) elaborating a trust model that
allows the hypervisor to build trust relationships toward its
VMs; and (3) incorporating trust as a building block factor
in the maximin game to optimize the process of detection
load distribution. Moreover, we compare the two versions
experimentally to verify the improvements brought to the
work by our new amendments.

Contributions. The objective of this work is to develop an
offline detection load distribution strategy that enables the
hypervisor, based on the trust relationships it builds toward
VMs, to learn about the optimal detection load percentage
that should be allocated to each of its guest VMs in real-
time. The purpose is to maximize the detection of DDoS
attacks under a limited amount of resources. To attain this
objective, we propose first a trust framework that enables
the hypervisor to construct trust relationships toward guest
VMs. To ensure building credible relationships, we combine
both the subjective and objective sources of trust. In the first
place, the hypervisor monitors and analyzes offline the
CPU, memory, and network bandwidth consumption of
each VM and employs the interquartile statistical technique
[9] to detect any abnormal behavior. This enables the hyper-
visor to establish a prior (objective) trust belief toward each
of its VMs. However, since the results of such a monitoring
process might be biased towards the properties of a certain
cloud infrastructure or towards a certain period of time
(e.g., promotion times), the hypervisor resorts then to the
subjective source of trust by collecting recommendations
from other hypervisors/VMs that have past interactions
(e.g., compositions, hosting) with the VMs being judged.
The objective (monitoring) and subjective (recommenda-
tions) sources are then aggregated using the Bayesian infer-
ence theory [10] to come up with posterior final trust scores.
We discuss as well a trust bootstrapping mechanism that
allows the hypervisor to allocate initial trust scores for the

newly deployed VMs for which no historical data about
their former behavior can be found.

On top of the proposed trust framework, we design a
resource-aware trust-based maximin game between the
hypervisor and DDoS attackers that incorporates the trust
scores of the VMs into the game formulation to optimize the
hypervisor’s decisions. The strategy of the attackers is to select
a probability distribution for each attack over a set of VMs in
such a way to minimize the hypervisor’s probability of detec-
tion (e.g., the VMs that the attacker thinks will be the least
monitored). On the other hand, the strategy of the hypervisor
is to select a probability distribution for the available detection
load over the set of VMs in order to maximize the attacker’s
minimization. The game is converted then into a Linear Pro-
gramming problem and solved using the simplex method
[11]. The outcome of the game is a probability distribution
over theVMs informing the hypervisor about the optimal per-
centage of detection load that should be placed on each of its
guest VMs in real-time. In summary, the main contributions
of this paper are highlighted in the following:

� Developing a trust model between the hypervisor
and its guest VMs that uses objective and subjective
sources of trust to optimize the credibility of the trust
scores. To the best of our knowledge, our work is the
first in the domain of cloud computing that investi-
gates the trust relationships between the cloud sys-
tem and VMs.

� Designing and solving a trust-based maximin game
between the hypervisor and DDoS attackers. The
solution provides the hypervisor with the optimal
detection load distribution strategy over VMs that
maximizes the detection of DDoS attacks under a
limited budget of resources. We believe that such a
(yet not available) detection load distribution strat-
egy would substantially advance the state-of-the-art
in distributed cloud-based IDSs.

We provide as well a complete numerical example that
explains how our proposed solution can be practically
applied in real-life applications. The performance of our
solution is evaluated experimentally using the CloudSim
simulator [12] that helped us create a cloud data center
mimicking the Amazon public datacenter in terms of VMs’
configuration (inspired by Amazon EC2 X-large instances1)
and pricing scheme (derived from the Amazon pricing
model2). Moreover, the trust scores of the VMs have been
populated from the Epinions trust dataset.3 Experimental
results reveal that our model maximizes the DDoS attacks
detection and minimizes the false positive and negative
rates. Moreover, our solution mitigates DDoS attacks’
impact by minimizing the CPU, memory, and network
bandwidth consumption in the presence of such attacks,
while being efficient in terms of execution time.

Paper Organization. Section 2 presents a literature review
on the IDSs proposed for cloud computing and highlights
the unique features of our work. Section 3 formulates the
problem and discusses the attack model. Section 4 explains

1. https://aws.amazon.com/ec2/details/
2. http://aws.amazon.com/ec2/pricing/
3. https://snap.stanford.edu/data/soc-Epinions1.html

WAHAB ETAL.: OPTIMAL LOAD DISTRIBUTION FOR THE DETECTION OF VM-BASED DDOS ATTACKS IN THE CLOUD 115

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 18:40:39 UTC from IEEE Xplore.  Restrictions apply. 

https://aws.amazon.com/ec2/details/
http://aws.amazon.com/ec2/pricing/
https://snap.stanford.edu/data/soc-Epinions1.html


the details of the trust model between the hypervisor and
VMs. Section 5 describes our trust-based maximin game
between the hypervisor and attackers and derives the solu-
tion of the game. Section 6 provides a numerical example
that demonstrates how our solution can be effectively
applied in practical scenarios. Section 7 explains the experi-
mental setup and presents experimental results. Finally,
Section 8 concludes the paper.

2 RELATED WORK

In the section, we explain the main contributions in each of
the aforementioned branches of IDSs and highlight the
unique features of our solution. We shed light as well on the
main trust models proposed for cloud-based environments
and stress the original aspects of our trust framework.

2.1 Network-Based Detection Systems

In [13], the authors propose a cooperative IDS for DoS attacks.
They assume that an IDS is deployed in each cloud region to
collect and analyze network packets. If the type of the packet
matches any type defined in the block table (that maintains
the bad packets to be blocked), then this packet is immediately
dropped by the IDS. If no match exists but the packet is cate-
gorized as anomalous, then the degree of severity is checked.
If the packet is classified as serious, then the IDS drops it and
notifies the other IDSs accordingly. If the packet is classified
as moderate, the IDS performs data clustering and threshold
check to find outliers and updates the alert level accordingly.
Finally, if the packet is identified as slight, then the system
simply ignores the alert. In [6], the authors address the DoS
attack in cloud environment by proposing a scheme for
tracing back the botmaster (i.e., themalicious user that admin-
istrates the botnets). To this end, the local network administra-
tor of the victim machine collects information (i.e., memory
images, network traffic between bots and Command-and-
Control (C&C) servers, and hostname of the C&C server), files
them to a traceback server, and asks the latter for a traceback
service. The traceback server embeds then Pebbleware, a
piece of code that reveals its host machine’s information, on
the communication packets from the victim node to the bot-
master. Once the Prebbleware reaches the botmaster, the
latter’s machine is obliged to send its IP address to the trace-
back server.

To sum up, network-based IDSs consist of the idea ofmon-
itoring the incoming and outgoing network traffic to identify
intrusions. This makes them effective in detecting outsider
attacks but unsuccessful in identifying internal attacks in
which attackers are part of the internal cloud system.

2.2 Host-Based Detection Systems

The authors in [7] advance a distributed detection system for
identifying DDoS attacks in the cloud. For this purpose, they
propose to equip each VMwith an IDS that monitors and col-
lects alerts. These alerts are then converted into basic proba-
bilities assignments and analyzed using Dempster-Shafer
[14].Ward and Barker [5] propose amulti-tier IDS calledVara-
nus that operates at the Infrastructure as a Service (IaaS) layer.
First, the k-nearest neighbor algorithm is used to split VMs
into a set of clusters on the basis of the similarity between their
software configuration features (e.g., database servers, web

servers).Within each group, VMs launch a gossip-basedmon-
itoring process by exchanging relevant information (e.g.,
memory usage) and then the under-utilized VMs are selected
to analyze the collected data. Lastly, each group’s aggregate
value is propagated to the other groups.

Summarizing, host-based IDSs deploy a monitoring
agent inside each VM to watch its behavior and recognize
any abnormal behavior. This makes them more successful
than network-based systems in dealing with both internal
and external attacks. Yet, host-based IDSs entail extra over-
head and management responsibilities for VMs’ owners
who are required to use their own resources to manage the
monitoring agents. Moreover, such systems can be manipu-
lated by experienced attackers who compromise the VM
instances and tamper the monitoring agents [8].

2.3 Hypervisor-Based Detection Systems

Lombardi and Di Pietro propose in [2] a virtualization-
supported security architecture whose main purpose is to
ensure the integrity of the VMs while being invisible to end
users. To this end, an Interceptor entity is deployed into
the kernel space of the host system to constantly monitor
the VMs’ system-call invocations. Thereafter, a Warning
Recorder entity registers the suspicious activities in a Warn-
ing Pool whose responsibility is to prioritize the evaluation
order of these activities. The Warning Recorder derives
checksums for code, data, and files and passes them to the
Evaluator entity that inspects the activities and takes the
appropriate decision on whether the system’s security has
been violated or not. In [3], the authors propose a Virtual
machine Intrusion Detector (VICTOR) for protecting cus-
tomers’ VMs from different attacks at the IaaS cloud layer.
The main purpose of VICTOR is to recognize the malicious
entities that generate the attack flow and dynamically iso-
late them. The proposed model is able to distinguish
between traffic produced from each VM even when several
VMs share a single IP address. In [4], a hypervisor-based
detection mechanism is proposed, where the VMs’ perfor-
mance metrics (e.g., block device read/write data, CPU
usage) are retrieved every second by endpoint agents
deployed at the hypervisor’s layer. Collected data is con-
veyed then to a controller node that analyzes it against
stored signatures to confirm whether there exists an
attack or not.

To summarize, the existing IDSs stop at the borders of
monitoring and analyzing events to identify intrusions.
Thus, these systems consider the detection problem from
the perspective of the IDS only without accounting for the
sophisticated strategies of the attackers. In our previous
work [8], we have developed a maximin game that is able to
determine the optimal detection load distribution over
VMs, while being aware of the attackers’ strategies who dis-
tribute their attacks over several VMs to complicate the
detection process. This work considers the prices of the
VMs as the main factor when designing the utility functions.
The idea is to let the hypervisor pay more attention to the
worthy VMs whose violation incurs painful losses for both
providers and users. In this paper, we extend this work by
(1) considering a practical DDoS attack scenario; (2) design-
ing a trust model that allows the hypervisor to establish
trust relationships toward its VMs; and (3) integrating trust
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as a building block factor in the maximin game with the aim
of optimizing the detection load distribution process.

We argue that introducing trust in the maximin game
would contribute in optimizing the detection load distribu-
tion process. In fact, such a trust model allows the hypervisor
to learn about the behavior of the VMs over the time and ena-
bles it hence to adjust the detection load distribution strategy
in such a way that assigns more load to the VMs that have a
large number of misbehavior during their past history.
Besides, the fact that trust is a private relationship between
the hypervisor and VMs reduces the possibility of the attacker
to predict the potential detection load distribution strategy
that will be adopted by the hypervisor. Practically, trust in
our case is simply a confidence degree believed by the hyper-
visor on the VMs’ behavior in accomplishing their tasks
smoothly without makingmalicious actions. Thus, the hyper-
visor is the sole party that will be aware of its (internal) trust
beliefs. Moreover, the fact that trust scores in our model are
not supposed to be communicated to any other party (other
than the hypervisor) eliminates the risks of eavesdropping
and/or altering them. The only threat that may arise against
trust valueswould be compromising the hypervisor itself and
sniffing the trust scores at the storage level. To remedy this
vulnerability, cloud-dedicated cryptographic solutions [15]
might be employed. In contrary, price is publicly available for
all the users, which enables the attacker to anticipate, for
example, that the hypervisor would dedicate more detection
load to themore valuable VMs and adjust hence its attack dis-
tribution strategy accordingly. We compare, in Section 7, our
solution against this price-based model [8] experimentally to
validate the aforementioned claims.

2.4 Trust Models in Cloud Computing

Trust has been widely investigated in the context of cloud
computing, where the current proposals have been focusing
mainly on building trust relationships between cloud pro-
viders and customers. In [16], the authors advanced a trust
model that helps clients assess cloud services based on the
Service-Level Agreement (SLA) criteria to aid these clients in
the process of selecting themost reliable cloud resources. Sim-
ilarly, the authors in [17] discussed a trust model that
accounts for four metrics such as availability, reliability, turn-
around efficiency, and data integrity to help users build trust
values toward cloud resources. Finally, a multi-faceted trust
management system is discussed in [18] to assist customers
with identifying the trustworthiness of cloud providers on
the basis of various parameters such as performance, security,
and compliance.

Overall, the existing trust models seek mainly to regulate
the relationships between cloud providers and customers,
without accounting for the intra-cloud trust relationships that
should be established among the cloud’s system components.
This makes our work the first in the domain of cloud comput-
ing that investigates the trust beliefs among the cloud system
and its guest VMs. Moreover, our trust framework has been
designed in such a way that overcomes the limitations of the
existing trust models identified in a previous survey work
[19]. Particularly, our trust framework combines objective
and subjective trust sources to optimize the credibility of the
trust results and overcome the collusion attacks. We discuss
as well a trust bootstrapping mechanism that helps us solve

the challenging problem of assigning initial trust scores for
the newly deployed VMs.

3 SYSTEM MODEL AND ASSUMPTIONS

We formulate in this section the studied problem formally
and explain then the attack model considered in this work.

3.1 System Model and Strategies

Let H ¼ fh1; h2; . . . ; hng be a finite set of hypervisors, where
each hypervisor hi 2 H hosts a set of virtual machines
Vi ¼ fv1; v2; . . . ; vlg. Note that when i is not important or
can be induced from the context, we simply use V instead
of Vi. Each virtual machine vj 2 V residing on hi is owned
by a client from the set C ¼ fc1; c2; . . . ; cmg. A hypervisor
hi 2 H is a software agent that stays between the cloud sys-
tem’s hardware and the VMs and whose role is to emulate a
set of hardware resources I ¼ fI1; I2; . . . ; Ing and schedule
the access of the VMs to it in order to enable the synchro-
nous running of multiple VMs on a shared cloud infrastruc-
ture. A virtual machine v 2 V (to simplify the notation, we
omit the index whenever possible) is a pair hO;Ai, where O
represents the underlying operating system (OS) and A
denotes the set of applications running inside v.

Definition 1 (Virtualized Cloud System). A virtualized
cloud system consists of a set of hardware resources I ¼
fI1; . . . ; Ing managed by a set hypervisors H ¼ fh1; . . . ; hng;
where each hypervisor h hosts a set of VMs V ¼ fv1;
v2; . . . ; vlg owned by a set of clients C ¼ fc1; . . . ; cmg to pro-
vide each v 2 V with a view that its OS and applications are
operating directly on some physical hardware.

As a first stage, the hypervisor seeks to establish trust
relationships toward its guest VMs. To do so, it first moni-
tors and analyzes the CPU, memory, and network band-
width utilization of each v 2 V . This allows the hypervisor h
to build an initial belief in each v’s trustworthiness denoted
as InitialBeliefv

h. The hypervisor collects then recommenda-
tions from other VMs/hypervisors on the behavior of the
underlying VMs. In the rest of this section, we abstract on
the identity of recommenders and refer to both VMs and
hypervisors as source. Each recommendation Rv

s 2 ½0; 1�
denotes a certain source s’s recommendation on the behav-
ior of a VM v based on their previous interactions. Note that
each source s enjoys a fixed number of inquiries it is
allowed to make from every (other) hypervisor h0 and is
denoted by Inqðs ! h0Þ. Initially, all sources enjoy an equal
amount of inquiries, where this amount is updated later
during the trust establishment process (See Section 4). Now,
the hypervisor h aggregates the results of the monitoring
phase with the results of the recommendations phase using
the Bayesian inference technique to come up with a final
belief Beliefvh in each v’s trustworthiness (See Section 4.3).

Having computed the final trust scores for the VMs, the
hypervisor integrates these scores into its utility function
(see Section 5). The objective is to benefit from the computed
trust scores to find the optimal distribution of the detection
load among its set of guest VMs that maximizes the attacks
detection probability, knowing that DDoS attackers are dis-
tributing their attacks over a set of VMs to minimize this
maximization.
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3.1.1 Attacker Strategy

In order to complicate the detection process and rip off the
hypervisor, attackers can use a mixed strategy by distribut-
ing a single DoS attack over multiple VMs running on top
of the same hypervisor. To this end, the attacker splits its
attack code into several malicious fragments and assigns a
set of fragments to each VM. Each malicious VM aims at
sending k malicious fragments to the hypervisor at different
time intervals. Let QV ¼ ðqðv1Þ; . . . ; qðvlÞÞ denote the proba-
bility distribution vector of the attacks over the set V
deployed on hypervisor h such that

P
v2V qðvÞ ¼ 1. The

attack succeeds if one or many malicious fragments attain
the hypervisor without being detected.

Definition 2 (Distributed Attack). A distributed attack is a
set of k malicious fragments ff1; . . . ; fkg distributed over V
with probability of qðvÞ for each v 2 V such that

P
v2V qðvÞ ¼ 1.

3.1.2 Hypervisor Strategy

Knowing this fact, the hypervisor, having a limited amount
of resources to be dedicated for detection, has to choose a
mixed strategy consisting of the optimal detection load
probability distribution vector PV ¼ ðpðv1Þ; . . . ; pðvlÞÞ over
the set V such that

P
v2V pðvÞ ¼ 1.

For the readers’ convenience, a graphical formulation of
the above-mentioned problem is given in Fig. 1 and the
methodology followed to perform our solution is schema-
tized in Fig. 2. Moreover, Table 1 defines and summarizes
the different notations that are used throughout the paper.

3.2 Attack Model

We consider in this work a DDoS attack scenario wherein
attackers are a group of VMs targeting a particular cloud sys-
tem. Although DDoS attacks in a cloud environment may
take many forms and can be seen in different contexts (e.g.,
application, web services, network, etc.), we focus in this
work on theDDoS attacks that occur at the virtualization layer
between the hypervisor and its guest VMs (i.e., VM-based
DDoS). Particularly, we study the case in which attacking
VMs try to flood the victim cloud system in such a way that
makes it unavailable to support further VMs. These attacking
VMs may be either malicious or compromised by a malicious
attacker to serve as bots in the DDoS attack process.4 To per-
form their attacks, DDoS attackers benefit particularly from
the auto-scaling (a.k.a elasticity) property that is provided by
the virtualization technology as an appealing added-value

Fig. 1. Attack scenario: Attackers distribute their attacks over a set of VMs
to minimize the detection probability, while hypervisors distribute the
detection load over the set of guest VMs tomaximize this minimization.

Fig. 2. Solution methodology.

TABLE 1
Notations

Symbol Significance

H : Set of hypervisors.
Vi (or
simply V )

: Set of virtual machines hosted on top of
hypervisor h.

InitialBeliefv
h : Initial belief of hypervisor h in virtual

machine v’s trustworthiness.
Beliefvh : Final belief of hypervisor h in virtual

machine v’s trustworthiness.
Rv

s : Recommendation given by a certain source
s on the behavior of a virtual machine v.

Inqðs ! h0Þ : Number of inquiries that a source s is
allowed to make from hypervisor h0.

QV : The attack probability distribution vector
over the set of virtual machines Vh

deployed on hypervisor h.
qðvÞ : Attack distribution probability on virtual

machine v.
qxðvÞ : Attack distribution probability on virtual

machine v at time x.
PVh : The detection load probability distribution

vector over the set of virtual machines Vh

deployed on hypervisor h.
pðvÞ : Probability of detection load allocated to

virtual machine v.
pxðvÞ : Probability of detection load allocated to

virtual machine v at time x.
WðvÞ : Worth of virtual machine v.
½t1; t2� : Window of time starting at time t1 and

ending at time t2.
t2 þ 1 : Current system time.
b½t1;t2� : Average detection rate of the IDS agent

running on hypervisor h during the win-
dow of time ½t1; t2�.

Ut2þ1ðhÞ : Utility function of hypervisor h at time
t2 þ 1.

Ut2þ1ðaÞ : Utility function of attacker a at time t2 þ 1.

4. In the rest of the paper, we abstract on the type of attacking VMs
and refer to them as attackers.
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feature to the cloud computing systems. Specifically, auto-
scaling enables the cloud to keep assigning extra resources to
the VMs that are in need for additional resources. Fortunately,
such a property leads to enhance the cloud system’s perfor-
mance thanks to the fact that a VM will never undergo
resource outages as long as the VM’s owner agrees to keep
paying bills versus receiving additional resources. Unfortu-
nately, this property is being appealingly manipulated by
DDoS attackers who compromise VMs and keep sending,
through these compromised VMs, fake resources scaling
requests. This allows the attacker to achieve the two following
malicious objectives: (1) draining the resources of the cloud
system to make it unable to support further VMs; and (2)
increasing the bill of the VMs’ real owners by obliging them
to pay for (supposedly) unrequested resources (a.k.a Eco-
nomic Denial of Sustainability (EDoS)) [1].

4 BUILDING TRUST ON VIRTUAL MACHINES

We describe in this section the details of the proposed trust
model consisting of four main phases: Virtual machines
monitoring, recommendations collection, trust aggregation,
and trusting newly deployed VMs.

4.1 Objective Trust: Virtual Machines Monitoring

In this phase, the hypervisor monitors the VMs’ CPU, mem-
ory, and network bandwidth consumption directly from the
hosting infrastructure and applies the Interquartile Range
(IQR) statistical measure to identify any abnormal usage.
This constitutes the objective source of trust which is of
prime importance in the field of trust and reputation to
avoid biased and/or subjective judgements [19]. The IQR is
a measure of variability whose basic idea is to split a given
set of data into disjoint quartiles (i.e., Q1, Q2, Q3).

The first quartile Q1 corresponds to the value in the data
set that 25 percent of the values are smaller than it. The sec-
ond quartile Q2 stands for the data set’s median value. The
third quartile Q3 represents the value in the data set that
25 percent of the values are higher than it. The IQR is
obtained then by subtracting the first quartile from the third
quartile. The reasons for choosing the IQR measure for the
considered problem lie in its (1) robustness to messy data
and outliers, and (2) simple and lightweight nature that
imposes no heavy computation efforts on the hypervisor [9].

The algorithm of this phase that is executed by the hypervi-
sor is depicted in Algorithm 1. Having monitored and
recorded the CPU, memory, and network bandwidth con-
sumption of the VM in question at time t (i.e., for the timewin-
dow ½t� m; t�), the hypervisor computes, for each of these
metrics (e.g., CPU), the median usage of the VM (step 20). It
finds then, based on the computedmedian, the first and third
quartilesQ1 andQ3 for each metric respectively (steps 21-22).
Using these quartiles, the IQR is computed by subtracting Q3

from Q1 and multiplying the obtained value by 1.5 (step 23).
Intuitively, thismeans that any value lyingmore than one and
a half times beyond the upper quartile is considered to be an
outlier according to Tukey analysis [20]. By adding the IQR to
the third quartile, the hypervisor computes the upper con-
sumption limit for each underlying metric (step 24). Intui-
tively, this limit represents the pattern of maximal habitual
utilization of the VM at a certain time period; where any

future utilization above this limit would be considered
unusual. The hypervisor checks then for any future consump-
tion of the VM at time tþ m whether there exists any con-
sumption that exceeds the computed upper limit (lines 25-26).
If so, this event is appended to a table that stores the VM’s
unusual consumption (line 27) and the average of unusual
consumption for eachmetric is computed (line 32). The hyper-
visor computes finally its initial belief in theVM’s trustworthi-
ness by dividing the sum of average unusual consumptions
over all the metrics by the number of metrics that the VM has
overconsumed, if any (line 40). If no metric has been overcon-
sumed, the initial belief in the VM’s trustworthiness would be
set to 1 (line 38), which represents a full initial trust in the VM.
Note finally that the whole process is repeated periodically
after a certain period of time m to continuously capture the
dynamism in the VMs’ performance and behavior.

For example, suppose that the CPU, memory, and band-
width upper consumption limits for a VM v were 60, 70, and
50 percent respectively. Suppose as well that v has been over-
consuming the CPU with an average of 73 percent, the mem-
ory with an average of 73 percent, but has not been
overconsuming the bandwidthmetric. Then, the proportional
overuse of CPU and memory would be calculated respec-
tively as follows (Algorithm 1-line 33): PropOverUseCPUv ¼
60=73 ¼ 0:822 and PropOverUseMemory

v ¼ 70=73 ¼ 0:959. The
initial hypervisor’s belief in v’s trustworthiness would then
amount to: InitialBeliefvh ¼ 0:822þ0:959

2 ¼ 0:8905. Note that we
have divided by 2 since only two metrics, namely the CPU
and memory have been overconsumed by v. Consider now
another case wherein v was overconsuming the CPU with an
average of 95 percent and the memory with an average of
98 percent. Then, the proportional overuse of CPU and mem-
ory would be calculated respectively as follows: PropOver
UseCPUv ¼ 60=95 ¼ 0:631 and PropOverUseMemory

v ¼ 70=98 ¼
0:714. The initial hypervisor’s belief in v’s trustworthiness
would then amount to: InitialBeliefvh ¼ 0:631þ0:714

2 ¼ 0:6725.
We notice from the two examples that as the overconsump-
tion keeps going far from the upper consumption limit, the
initial trust score keeps decreasing (i.e., 0:6725 < 0:8905).

4.2 Subjective Trust: Recommendations Collection

In order to enhance the quality of the trust scores, the hyper-
visor collects recommendations Rv

s1
; . . . ; Rv

sn
(where

Rv
si
2 ½0; 1�) on the former behavior of the VMs. This consti-

tutes the subjective source of trust and is widely used in the
context of trust and reputation thanks to the fact that it con-
sults different parties’ opinions to improve the quality of the
judgements [19]. The source of the recommendations may be
either VM(s) having dealt with the VM in question or other
hypervisor(s) having previously hosted that VM. The recom-
mendations obtained from the former source (i.e., VMs) are
important to learn about the performance of the VMs in cases
of services cooperation or composition in the cloud. The rec-
ommendations obtained from the latter source (i.e., hypervi-
sors) allow us to capture the dynamism in the VMs’
performance on different cloud infrastructures, which allevi-
ates the risk of misjudging VMs because of bad performance
of the host cloud system. This contributes in enhancing the
detection accuracy under a changing cloud infrastructure
environment. The recommendations are derived based on
the overall behavior of the VMs, not only based on the
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metrics related to DDoS attacks. For example, if a certain VM
is not launching a DDoS attack but launching a side-channel
attack [21], then it should receive low recommendation
scores. We argue that obtaining such recommendations is
becoming easier with the emerging cooperation architec-
tures that are being proposed and adopted for cloud-based
services such as services’ communities and cloud federations
[14], [22]. Practically, such architectures allow services, com-
ing either from one cloud or deployed even in different cloud
centers, to cooperate with one another in order to improve
the performance and security of the underlying system. In
this way, services (in the form of VMs) are allowed to easily
migrate from one cloud infrastructure to another as a result
of the community/federation agreement contract. In the
same context, the VMs that are grouped in the same commu-
nity/federation are likely to cooperate with one another to
better respond to customers’ requests. Therefore, obtaining
recommendations from both hypervisors and VMs is becom-
ing simpler andmore realistic.

4.3 Trust Aggregation

Having obtained both the objective and subjective sources of
trust, the next step is to aggregate these sources and come up
with final aggregate trust scores for the VMs. For this purpose,
we employ the Bayesian inference from the subjective probabil-
ity theory [10]. Bayesian inference is a theory that describes
uncertainty using a probability distribution. In simple words,
assume that a person has an uncertainty about an issue. This
uncertainty may be depicted using a probability distribution
known as that person’s prior distribution. Assume now that
this person has been able to gain some information pertinent
to that issue. The information evolves his uncertainty, which
may be then represented as a new probability distribution
called posterior distribution. This posterior distribution reflects
the knowledge obtained from both the prior distribution and
new information. The main function of Bayesian inference
lies in the process of moving from prior to posterior distribu-
tion. In our case, the prior distribution represents the hyper-
visor’s initial beliefs about VMs obtained from themonitoring
process described in Algorithm 1 prior to collecting recom-
mendations. This allows us to overcome a substantial prob-
lem of Bayesian inference caused by the arbitrary choices of
the initial prior beliefs, where suchuninformative prior beliefs
have a great negative impact on the precision of the posterior
final beliefs [23]. Once the recommendations are gathered, the
prior distribution is converted into a posterior distribution
that reflects the updated hypervisor’s beliefs after analyzing
the received recommendations. This is done by employing
the conditional probability laws often referred to as Bayes theo-
rem [24].

By applying the Bayes theorem for aggregating the objec-
tive and subjective trust sources, we get that the Bayesian
estimation of the trust belief in a VM v with n recommenda-
tions Rv

s1
; . . . ; Rv

sn
(where Rv

si
2 ½0; 1�) is given by

Beliefv
h ¼

Xn
i¼1

Rv
si
þ ng

2n
; (1)

where g ¼ InitialBeliefvh represents the hypervisor h’s
prior belief in v’s trustworthiness, Rv

si
denotes a recommen-

dation given on v by a source si, and n is the total number

of collected recommendations. Note that a similar aggrega-
tion function has been used in [25], [26] to compute trust
values for Web services willing to participate in composi-
tion processes.

Algorithm 1. Virtual Machines’ Monitoring

1: Initialization:
2: m: size of time window after which the algorithm is to be

repeated
3: v: a VM being monitored by the hypervisor
4: U ¼ fCPU;memory; and bandwidthg: the set of v’s metrics

to be analyzed by the hypervisor
5: Ux

v ðtÞ: a table recording the amount of each metric x 2 U
consumed by v during the time interval ½t� m; t�

6: Mx
v ðtÞ: the median consumption of x 2 U by v during the

time interval ½t� m; t�
7: Q1xvðtÞ: the 1st quartile consumption of x 2 U during the

time interval ½t� m; t�
8: Q3xvðtÞ: the 3rd quartile consumption of x 2 U during the

time interval ½t� m; t�
9: IQRx

v ðtÞ: the IQR consumption of x 2 U by v during the
time interval ½t� m; t�

10: LxðtÞ: the upper consumption limit of x 2 U during the
time interval ½t� m; t�

11: OverUsexv : sum of v’s unusual consumption of x 2 U
(initialized to 0)

12: CountOverUsexv : a counter enumerating the occurrence
of unusual consumption of x 2 U by v (initialized to 0)

13: AvgOverUsexv : v’s average unusual consumption of x 2 U
14: PropOverUsexv : v’s unusual consumption of x 2 U

proportionally to the upper consumption limit of this x
15: jOverusedMetricsj: the number of metrics that v

overconsumed such that jOverusedMetricsj � jU j
16: InitialBeliefv

h: the initial belief of hypervisor h in v’s
trustworthiness

17: procedure VMMonitoring
18: repeat
19: for eachmetric x 2 U do
20: Compute the medianMx

v ðtÞ of Ux
v ðtÞ

21: Find Q1xvðtÞ as the median of Ux
v ðtÞ’s lower half

22: Find Q3xvðtÞ as the median of Ux
v ðtÞ’s upper half

23: Compute IQRx
vðtÞ ¼ ðQ3xvðtÞ �Q1xvðtÞÞ � 1:5

24: Compute Lx
vðtÞ ¼ IQRx

vðtÞ þQ3xvðtÞ
25: for each data point y 2 Ux

v ðtþ mÞ do
26: if y > Lx

vðtÞ then
27: OverUsexv ¼ OverUsexv þ y
28: CountOverUsexv ¼ CountOverUsexv þ 1
29: end if
30: end for
31: if CountOverUsexv > 0 then
32: AvgOverUsexv ¼ OverUsexv=CountOverUsexv
33: PropOverUsexv ¼ Lx

v ðtÞ=AvgOverUsexv
34: jOverusedMetricsj ¼ jOverusedMetricsj þ 1
35: end
36: end for
37: if jOverusedMetricsj ¼ 0 then
38: InitialBeliefv

h ¼ 1
39: else
40: InitialBeliefv

h ¼
P

x2U PropOverUsexv
jOverusedMetricsj

41: end
42: until m elapses
43: end procedure
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As a reward for submitting recommendations, the VMs
and hypervisors should receive some payment. The pay-
ment is given in the form of inquiry requests that they can
make from (other) hypervisors on the behavior of (other)
VMs. Specifically, a source s receives an increase in the
number of inquiries Inqðs ! h0Þ it can make from hypervi-
sor h0 for which it has recommended a VM v0 proportionally
to the difference between the trust recommendation Rv0

s

submitted by s and the final hypervisor h0’s belief in v0’s
trustworthiness. Formally, let diff ¼ Rv0

s �Beliefv
0

h0
���

���, the
source swould receive the following payment

Inqðs ! h0Þ ¼
Inqðs!h0Þ
diff�a

l m
; if Inqðs ! h0Þ > 0

1
diff�a

l m
; otherwise:

8><
>:

(2)

The purpose of this payment mechanism is two-fold. On
the one hand, it stimulates the participation of both VMs
and hypervisors in the trust establishment process. Practi-
cally, the hypervisors and VMs that refuse to participate
would end up being unable to make further inquiries about
the behavior of (other) VMs since the number of inquiries
that they are able to make would be drained over the time
without receiving any additional reward, which deprives
them from constructing further trust beliefs. On the other
hand, the proposed payment mechanism motivates these
VMs and hypervisors to give honest recommendations
through making the amount of payment proportional to the
difference between the given recommendations and the
final hypervisor’s belief. In this way, hypervisors/VMs
whose recommendations diverge from the final belief will
get their payment decreased; whereas those whose submit-
ted recommendations are convergent to the final belief
would receive a larger amount of payment. Note finally that
a is a smoothing factor chosen by the designer and whose
main role is to avoid the saturation of VMs/hypervisors in
terms of number of inquiries and motivate thus their further
participation in the trust establishment process. In this way,
the larger a is, the less the number of additional inquiries
rewarded to VMs/hypervisors would be.

4.4 Trusting Newly Deployed VMs

Building trust relationships toward the VMs that are
newly deployed in cloud centers constitutes evidently a
serious obstacle against our proposed trust mechanism.
Indeed, the absence of any historical and actual informa-
tion that corroborates the performance of such VMs makes
it quite difficult to compute trust scores for them. This
raises the need for a mechanism enabling the hypervisor
to assign initial trust values for the newly deployed VMs
in the absence of any historical and current data. Such a
problem is referred to as a trust bootstrapping problem
[14]. To handle this issue, we capitalize on the trust boot-
strapping mechanism proposed in our previous work [14]
to form trustworthy multi-cloud services communities and
that combines the concept of endorsement in online social
networks (e.g., LinkedIn) with the decision tree classifica-
tion technique to solve the problem. We borrow the overall
logic used in that mechanism, while performing some
technical updates to adapt it to our studied problem. The
idea is explained in the following.

Whenever a hypervisor is willing to build trust toward a
certain VM that is newly created, it sends a bootstrapping
requests to other VMs and hypervisor asking to endorse the
VM in question. Interested VMs/hypervisors (e.g., those
having enough resources to participate in such a process)
train a decision tree classifier on the dataset containing the
details of their interactions (e.g., provider’s name, operation
country, etc.) with several VMs having various functional
and non-functional properties. The classifier learns the pat-
terns of the data by pairing each set of inputs (e.g,
provider’s name, operation country) with the correspond-
ing output (i.e., trust score). For this sake, boostrappers use
the k-fold cross-validation technique to create training and
testing sets. In this way, the dataset gets split into k subsets,
each used everytime as test set and the other k� 1 subsets
are combined altogether to form up the training set. The
main advantage of this technique lies in its ability to miti-
gate the bias of the classification results toward the manner
based on which data is being divided. This is achieved by
letting each data point be a member of the test set exactly
once and a member of the training set k� 1 times. The accu-
racy of the training process is then assessed by bootstrap-
pers to decide on wether to submit endorsements or not.
Particularly, if the underlying accuracy is high, this means
that there exists a worthy similarity between the VM being
bootstrapped and (some of) the VMs that bootstrappers
have dealt with. In this case, bootstrappers are better off
submitting their endorsements to the requesting hypervisor.
On the other hand, if the accuracy is low, bootstrappers are
better off refraining from submitting false endorsements
(thanks to the payment mechanism described in the follow-
ing). This voluntary aspect of the bootstrapping process is
necessary to guarantee the fairness for both bootstrappers
(in terms of payments and/or resource availabilities) and
bootstrapped (in terms of endorsements’ precision) parties.

The endorsements from the different bootstrappers are
then aggregated using the Bayesian inference equation
(Eq. (1)) in order to avoid biased endorsements. In this case,
the prior beliefs in all the newly deployed VMs would be all
set to 1

2 (i.e., g ¼ 1
2), where this expresses a neutral belief

between trust and distrust. Finally, bootstrappers receive
payments from the boostrapping requestor for having
helped it construct trust beliefs. The payment for bootstrap-
pers is given again in terms of additional inquiry requests
they can make from the bootstrapping requestor as per
Eq. (2). This payment mechanism is important to (1) stimu-
late the hypervisors/VMs that enjoy high classification
accuracy rates to get involved in the bootsrapping process
so as to receive payments; and (2) discourage the malicious
hypervisors/VMs from offering bogus endorsements to ille-
gally promote/demote some VMs.

5 DETERMINING THE OPTIMAL DETECTION LOAD

DISTRIBUTION STRATEGY: TRUST-BASED

MAXIMIN GAME

Having computed the trust scores, we can now proceed
with designing the utility functions of both the hypervisor
and DDoS attackers and modelling the new trust-based
maximin game. The utility of a hypervisor h quantifies its
success in protecting the monitored virtual machines V , of
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worthWðvÞ each, inversely proportional to h’s belief in each
v’s trustworthiness. The utility function of h at time t2 þ 1
that comes after the considered window of time ½t1; t2� is
computed as follows:

Ut2þ1ðhÞ ¼
X
v2V

W ðvÞ � b½t1;t2�
Beliefv

h

; (3)

where WðvÞ represents the worth of each virtual machine
v (e.g., price, criticality of the applications running on it),
Beliefv

h denotes the belief of h in v’s trustworthiness, and
b½t1;t2� is the average detection rate of the IDS agent run-
ning on h during the time window ½t1; t2� and is computed
as per

b½t1;t2� ¼ 1�
Xt2
x¼t1

X
v2V

ðqxðvÞ � pxðvÞÞ
t2 � t1

for each qxðvÞ > pxðvÞ;

(4)

where pxðvÞ (respectively qxðvÞ) is the value of pðvÞ (qðvÞ) at
time x.

The idea behind dividing by the trustworthiness belief
in the utility function is to make the utility of the hypervi-
sor increase when the belief in a certain VM’s trustworthi-
ness decreases and vice versa. In this way, the hypervisor
would pay more attention to those VMs that it believes are
less trusted when deciding about the optimal detection
load distribution strategy. This adds a learning component
to the game and aids the hypervisor hence to optimize its
detection load distribution strategy. It is worth mentioning
that all the calculations in the rest of the paper are done at
time t2 þ 1 (i.e., the current time for the hypervisor). Thus,
we simplify the notation and use UðhÞ instead of Ut2þ1ðhÞ
when referring to hypervisor’s h utility at time t2 þ 1. The
payoff of the attacker a represents the loss incurred to the
hypervisor as a result of a successful attack. Therefore,
the payoff of the attacker is the negation of the hyper-
visor’s payoff, i.e.,

UðaÞ ¼ �UðhÞ; (5)

This forms a hypervisor-attacker (two-player) zero-sum
game wherein one player’s gain is equivalent to the other
player’s loss.

Definition 3 (Hypervisor-Attacker Zero-Sum Game). A
hypervisor-attacker zero-sum game is a tuple G ¼ hh; a; PV ;
QV ; UðhÞi, where:

� h: Denotes the hypervisor (i.e., the first player).
� a: Denotes the attacker (i.e., the second player).
� PV : Denotes the probability distribution vector of the

detection load over the set V of VMs hosted on top of h
(i.e., the mixed strategy of h).

� QV : Denotes the probability distribution vector of the
attack over the set V of VMs hosted on top of h (i.e.,
the mixed strategy of a).

� UðhÞ: The utility function of the hypervisor h.

The objective of the attacker is to choose its probability
distribution QV for distributing the DoS attack over the
VMs’ set with the aim of minimizing the hypervisor’s

detection probability and hence minimizing the latter’s
payoff, i.e.,

argmin
QV

UðhÞ: (6)

Knowing this fact, the hypervisor would choose a proba-
bility distribution PV over the set of VMs in such a way to
maximize the attacker’s minimization, i.e.,

argmax
PV

min
QV

UðhÞ: (7)

This forms a maximin game wherein the attacker tries to
minimize the hypervisor’s probability of detecting his
attacks by distributing each attack over multiple VMs,
whereas the hypervisor tries to maximize this minimization
by choosing the optimal distribution of detection load over
the VMs.

Definition 4 (Hypervisor’s Maximin Strategy). The maxi-
min strategy for the hypervisor h is argmaxPV minQV

UðhÞ and
the maximin value for h ismaxPV minQV

UðhÞ.
The solution of the game can be devised using Linear

Programming (LP), referred to as the problem of determin-
ing the values of some real variables for the purpose of min-
imizing or maximizing a linear function (the objective
function) subject to linear constraints on these variables. To
this end, let us consider the problem first from the point of
view of the hypervisor trying to maximize the minimum of
the attacker and let us rewrite Eq. (7) as follows:

maximize min
QV

X
v2V

pðvÞ � UðhÞ

subject to
X
v2V

pðvÞ ¼ 1;

pðvÞ � 0; for all v 2 V:

(8)

By inspecting Eq. (8), we can notice that the objective
function is not linear in the p’s owing to the presence of the
min operator. Therefore, the problem in its current form
cannot be solved using LP. To linearize it, we define a vari-
able f such that f � min

QV

X
v2V

pðvÞ � UðhÞ and try to make f

as large as possible subject to this new constraint. Thus, the
problem is turned into choosing f and

P
v2V pðvÞ to

maximize f

subject to f �
X
v2V

pðvÞ � UðhÞ;

pðv1Þ þ � � � þ pðvlÞ ¼ 1;

pðvÞ � 0; for all v 2 V:

(9)

Intuitively, this means that the hypervisor, by choosing
its mixed strategy pðvÞ 2 PV , is trying to make as large as
possible the minimum that the attacker is attempting to
inflict by playing his mixed strategy qðvÞ 2 QV . To ease
the computations, we transform the LP presented in
Eq. (9) into a simpler form. Assume that f > 0 and let
xðvÞ ¼ pðvÞ

f . The constraint pðv1Þ þ � � � þ pðvlÞ ¼ 1 becomes
then xðv1Þ þ � � � þ xðvlÞ ¼ 1=f . Since maximizing f is
equivalent to minimizing f’s reciprocal 1=f , we can get
rid of f in our problem by rather minimizing
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xðv1Þ þ � � � þ xðvlÞ. Thus, the problem becomes: Choose
xðv1Þ þ � � � þ xðvlÞ to

minimize xðv1Þ þ � � � þ xðvlÞ
subject to 1 �

X
v2V

xðvÞ � UðhÞ;

xðvÞ � 0; for all v 2 V:

(10)

The above problem may be solved in polynomial time
using the simplex method for solving Linear Programming,
which is known for its fast performance [11]. Having solved
the problem, the hypervisor’s optimal strategy would be
pðvÞ ¼ f � xðvÞ for each v 2 V .

If we consider the problem from the attacker’s point of
view, the latter’s objective is to minimize the hypervisor’s
maximal probability of detection.

Definition 5 (Attacker’s Minimax Strategy). The minimax
strategy for the attacker a is argminQV

maxPV UðhÞ and the
minimax value for a isminQV

maxPV UðhÞ.
The problem can be written as follows:

minimize max
PV

X
v2V

qðvÞ � UðhÞ

subject to
X
v2V

qðvÞ ¼ 1;

qðvÞ � 0; for all v 2 V:

(11)

Using the same logic of transformation followed for the
hypervisor’s maximization problem, the problem in Eq. (11)
can be rewritten as

minimize g

subject to g �
X
v2V

qðvÞ � UðhÞ;

qðv1Þ þ � � � þ qðvlÞ ¼ 1;

qðvÞ � 0; for all v 2 V:

(12)

By carefully examining Eqs. (9) and (12), we notice that the
two programs are dual. Following the duality theorem [27],
the maximum that the hypervisor can realize in Eq. (12) is
equivalent to the minimum that the attacker can achieve in
Eq. (9).

6 NUMERICAL EXAMPLE

Consider a hypervisor h hosting, at time t, three VMs v1,
v2, and v3. The prices of these VMs are $5.33, $5.24, and
$6.86 respectively. Suppose as well that the hypervisor’s
detection probability at time t is 0.85. The first step would
be to build trust relationships between the hypervisor
and its three guest VMs. Assume that the hypervisor per-
forms a monitoring process for the VMs’ performance
using Algorithm 1 and that the monitoring process results
in the following initial trust beliefs: InitialBelief

v1
h ¼ 0:66,

InitialBelief
v2
h ¼ 0:32, and InitialBelief

v3
h ¼ 0:68. Note

that v2 is (largely) suspected initially to be launching
DDoS attacks. To alleviate the uncertainty and come up
with final beliefs, the hypervisor asks three other sources
(i.e., VMs and hypervisors), say s1, s2, and s3, about each
VM’s past behavior.

For v1, suppose that the trust recommendations from the
three sources are: Rv1

s1
¼ 0:66, Rv1

s2
¼ 0:43, and Rv1

s3
¼ 0:78. By

applying Eq. (1) to compute the final belief in v1’s trustwor-
thiness, we get: Beliefv1

h ¼ 1:87þ3�0:66
2�3 ¼ 0:642. For v2, sup-

pose that v2 is actually malicious and that s1 and s2
colluded to give v2 high (good) recommendation scores,
while s3 gives a honest recommendation. Let the trust rec-
ommendations from the three sources regarding v2 be:
Rv2

s1
¼ 0:77, Rv2

s2
¼ 0:61, and Rv2

s3
¼ 0:40. By applying Eq. (1)

to compute the final belief in v2’s trustworthiness, we get:
Belief

v2
h ¼ 1:78þ3�0:32

2�3 ¼ 0:456. Note that although both s1
and s3 colluded to give v2 high recommendation scores, the
final belief of h in v2’s trustworthiness is still low (i.e.,
0.456), which reveals that our trust model is quite resilient
to the collusion attacks even when attackers form the major-
ity. This is the case because our model combines objective
and subjective sources to maximize the accuracy of the final
trust results. For v3, suppose that the trust recommenda-
tions from the three sources are: Rv3

s1
¼ 0:66, Rv3

s2
¼ 0:59, and

Rv3
s3

¼ 0:63. By applying Eq. (1) to compute the final belief in
v3’s trustworthiness, we get: Belief

v3
h ¼ 1:88þ3�0:68

2�3 ¼ 0:653.
Suppose now that a is set to 1.5 and that all of s1, s2 and s3
were allowed initially to make 2 inquiries from h (i.e.,
Inqðs1 ! hÞ ¼ 2, Inqðs2 ! hÞ ¼ 2, and Inqðs3 ! hÞ ¼ 2). As
rewards for recommending VMs to h, these three sources
receive payments in the form of additional inquiries that
they can make from h. For recommending v1 and as per
Eq. (2), the number of additional inquiries s1 can make from
h increases up to 2

0:66�0:642j j�1:5 ¼ 74, the number of addi-
tional inquiries s2 can make from h increases up to

2
0:43�0:642j j�1:5 ¼ 6, and the number of additional inquiries s3
can make from h increases up to 2

0:78�0:642j j�1:5 ¼ 10. The
same logic of payment calculation applies also as to recom-
mending v2 and v3. It is worth noticing that s1 whose recom-
mendation score nearly agrees with h’s final belief receives a
large amount of inquiries compared to s2 and s3 whose rec-
ommendation scores diverge somewhat from that belief.

By employing Eqs. (3) and (5) for deriving the utility val-
ues of the hypervisor and attacker respectively, we obtain
the following game matrix

v1 v2 v3

U ¼
v1

v2

v3

7:06 �9:77 �8:929

�7:06 9:77 �8:929

�7:06 �9:77 8:929

0
B@

1
CA:

In this matrix, the row represents the hypervisor and the
column represents the attacker. Given that we consider a
zero-sum game wherein the attacker’s gain is equal to the
hypervisor’s loss and vice versa, we present only the hyper-
visor’s utility in order to simplify notations. Thus, Uði; jÞ
would denote the hypervisor’s utility when it is monitoring
vi while the attacker is launching its attack through vj,
whereas �Uði; jÞ would denote the attacker’s utility in that
case. For instance, when the hypervisor monitors v1 while
the attacker is attacking through v1, the hypervisor would
gain Uð1; 1Þ ¼ 5:33�0:85

0:642 ¼ 7:06 for having been successful in
protecting v1 and the attacker would lose 7.06 for his unsuc-
cessful attack. Contrariwise, when the hypervisor monitors
v1 while the attacker is attacking through v2, then the former
would lose Uð1; 2Þ ¼ 5:24�0:85

0:456 ¼ 9:77 for being unsuccessful
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in protecting v2, while the latter gains 9.77 for having his
attack successful.

Having represented the problem, the next step is to
determine the optimal detection load distribution using the
simplex technique. This is done by following the subse-
quent steps:

Step 1: Add a constant to all the matrix’s entries, if necessary,
to make sure that all the entries are non-negative.

In order to make all U’s elements non-negative, we need
to add 9.77 to each entry. This makes the game matrix
become

v1 v2 v3

U 0 ¼
v1

v2

v3

16:8300 0 0:8410

2:7100 19:5400 0:8410

2:7100 0 18:6990

0
B@

1
CA:

Step 2: Create a tableau T by (1) extending the matrix with a
border of þ10s along the right edge, �10s along the lower edge,
and zero in the lower right corner and (2) labelling the hyper-
visor’s strategies on the left from x1 to xm and those of the attacker
on the top from y1 to yn.

After applying step 2, we obtain:

y1 y2 y3

x1 16.8300 0 0.8410 1
x2 2.7100 19.5400 0.8410 1
x3 2.7100 0 18.6990 1

�1 �1 �1 0

Step 3: Select the pivot belonging to row “a” and column “b”
subject to the following properties:

1) The border number in the lower edge of the pivot’s column
“b” must be negative.

2) The pivot T ða; bÞ must be positive.
3) The pivot should belong to the row giving the smallest

ratio (of the border number in right edge to the pivot)
among all the positive entries in the pivot column.

Since there exists negative elements in all of T ’s three col-
umns, we can choose any of these columns to be the pivot
column. Let’s select column 1. Given that the pivot has to be
positive, then the selection space is restricted to the first
three rows. To determine the pivot, we compute the ratio
(of the border number in right edge to the pivot) for the ele-
ments in the first three rows to learn about the element that
gives the smallest ratio. The ratios for the three elements are
0.0594, 0.3690, 0.3690 respectively. Since 0:0594 < 0:3690,
then the first element is selected to be the pivot, i.e.,
T ð1; 1Þ ¼ 16:8300.

Step 4: Perform the pivoting steps as follows:

1) Substitute the pivot value with its reciprocal.
2) Substitute each element in the pivot row, except for the

pivot, with its value divided by the value of the pivot.
3) Substitute each element in the pivot column, except for the

pivot, with the negative of its value divided by the value of
the pivot.

4) Substitute each element T ði; jÞ not belonging neither to
the pivot row nor to the pivot column with T ði; jÞ�
T ða; jÞ � T ði; bÞ=T ða; bÞ.

Step 5: Substitute the label of the pivot row with that of the
pivot column and vice versa.

After applying steps 4 and 5, the tableau would become:

x1 y2 y3

y1 0.0594 0 0.05 0.0594
x2 �0:1610 19.54 0.7056 0.8390
x3 0.1610 0 18.5636 0.839

0.0594 �1 �0:95 0.0594

Step 6: Check whether there is any negative number remaining
in the lower border row. If so, return to step 3; otherwise, jump to
step 7.

Since the lower border row still contains two negative
entries, we return back to step 3 and execute the pivoting
process again. This process gets repeated until having all
the elements in the lower border row non-negative. Once
this condition is fulfilled, the tableau becomes:

x1 x2 x3

y1 0.0599 0 �0:0027 0.0572
y2 �0:0079 0.0512 �0:0019 0.0413
y3 �0:008 0 0.0539 0.0452

0.0432 0.0512 0.0492 0.1437

We can now go forward to step 7 since all the entries in
the lower border row are at this stage non-negative.

Step 7: The solution is determined as follows:

1) The optimal strategy of the hypervisor is (1) zero for the
hypervisor’s variables that end up on the left side, and (2)
the value of the bottom edge in the same column divided
by the lower right corner for those that end up on the top.

2) The attacker’s optimal strategy is (1) zero for the
attacker’s variables that end up on the top, and (2)
the value of the right edge in the same row divided by the
lower right corner for those that end up on the left.

In our case, the optimal detection load probability distri-
bution of the hypervisor over its guest VMs would be:

� pðv1Þ ¼ 0:0432=0:1437 ¼ 0:3011,
� pðv2Þ ¼ 0:0512=0:1437 ¼ 0:3562, and
� pðv3Þ ¼ 0:0492=0:1437 ¼ 0:3427.
On the other hand, the optimal attack probability distri-

bution of the attacker over the VMs would be:

� qðv1Þ ¼ 0:0572=0:1437 ¼ 0:3979,
� qðv2Þ ¼ 0:0413=0:1437 ¼ 0:2875, and
� qðv3Þ ¼ 0:0452=0:1437 ¼ 0:3146.
Following these calculations, the hypervisor’s optimal

strategy is to assign (in real-time) 30.11 percent of the detec-
tion load to v1, 35.62 percent to v2, and 34.27 percent to v3.
On the other hand, the attacker’s optimal strategy is to dis-
tribute the DoS attacks over VMs as follows: 39.79 percent
for v1, 28.75 percent for v2, and 31.46 percent for v3.

7 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we describe the experimental setup and pres-
ent experimental results by comparing our solution with a
benchmark consisting of the price-based maximin [8] and the
fair allocation [28], [29] detection load distribution strategies.
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7.1 Experimental Setup

We provide experimental results to test the performance of
our model and validate the theoretical and numerical
results obtained in the previous sections. The objective of
these experiments is three-fold. First, we aim to study how
effective the proposed model is in terms of augmenting the
attack detection and minimizing both the false positives
and negatives. Second, we verify that applying our solution
under DDoS attack environments contributes in minimizing
the CPU, memory, and network bandwidth wastage. Third,
we aim to test the efficiency of our solution in terms of exe-
cution time. To these ends, we conduct our experiments
using CloudSim [12] in a 64-bit Windows 7 environment on
a machine equipped with an Intel Core i7-4790 CPU
3.60 GHz Processor and 16 GB RAM. CloudSim is a cloud
simulation tool that has witnessed in the past few years a
growing recognition among both academic and industrial
milieux. It provides several features that help mimic realis-
tic cloud environments by enabling the simulation of (1)
large-scale cloud environments including co-hosted virtual-
ized services; (2) service provisioning and resources alloca-
tion policies; (3) network connections among the different
cloud components; and (4) federated cloud environments
that inter-network resources from both private and public
domains [12]. We decided to simulate our own cloud
instead of using rented resources from one of the existing
cloud providers for the two following main reasons. First,
most of the cloud providers such as Amazon EC2 have
restriction rules regarding any security testing on their
resources and systems, where all the large cloud providers
list DoS testing as a non-permissible activity [30]. Second,
no cloud provider offers its users direct access to the VMs’
host, which makes inspecting performance information at
the host level quite difficult to perform [30].

To build our cloud, we create a datacenter whose VMs’
configuration is inspired by Amazon EC2 X-large instances.5

Practically, the created datacenter hosts five physical
machines each of which is assigned with a number of VMs
varying from 10 to 50 of image size amounting to 10,000 MB
each. Every VM is equipped with 5-core CPU of 1,000 Mil-
lions of Instructions Per Second (MIPS) each. Each VM has a
memory RAM capacity of 16 GB, hard drive storage of
976.5625 GB, and network bandwidth share of 50,000 Kbit/s.
In the created datacenter, x86 has been used as a system
architecture, Linux as an operating system, and Xen as a

Virtual MachineMonitor (VMM). The properties of the data-
center and VMs are summarized in Table 2. The VMs are
given a set of CPU-intensive tasks (i.e., cryptographic opera-
tions and scientific computations). The properties of the
tasks have been populated from SPECjvm2008 [31], a stan-
dard benchmark suite for Java virtual machines.

To populate the trust recommendations regarding VMs,
we resort to the use of the Epinions data set6 that has been
long used in cloud computing and many other domains for
representing trust [32], [33]. The data set comprises 664,824
ratings given by 49,290 agents on 139,738 items. The prices
of the VMs that are used along with the trust scores to com-
pute the utility functions of both the hypervisor and attack-
ers have been populated from the Amazon EC2 pricing
dataset.7 We compare our model against a benchmark con-
sisting of two other models, namely the Price-based Maximin
[8] and Fair Allocation [28], [29]. Similar to our model, the
Price-based Maximin employs a maximin game to derive the
optimal detection load distribution. However, unlike our
solution, this model considers the worth of the VMs (con-
cretized as the VMs’ prices) solely in the formulation of the
problem. Our model considers, in addition to the worth, the
trust scores of the VMs believed by the hypervisor. The fair
allocation model, on the other hand, distributes the detec-
tion load in an equal fair manner among all VMs. Note that
we have selected the fair allocation model to compare with
since it is the commonly used allocation strategy for cloud
resources in the domain of cloud computing [28], [29]. We
have adapted the resources fair allocation model to the
detection load distribution problem as we were not able to
find, through our extensive literature review investigation,
any detection load distribution strategy in the domain of
cloud computing other than our previous Price-based Maxi-
min strategy [8].

7.2 Experimental Results

Fig. 3 studies how effective the proposed model is in
improving the detection performance metrics, namely
attack detection, false positive and false negative percen-
tages compared to the price-based maximin and fair alloca-
tion models. Fig. 3a reveals that our solution along with the
price-based maximin outperforms the fair allocation model
in terms of attack detection (this is the case as well for the
rest of the parameters as will be shown later). The reason is
that the two former models consider the attacker’s strategy
when deciding about the detection load distribution strat-
egy among VMs contrary to the fair allocation model
wherein the distribution is done by considering the IDS’s
perspective only. Moreover, Fig. 3a shows that the trust-
based maximin performs better than the price-based maxi-
min model in increasing the detection of the attacks. This is
because our trust-based solution allows the hypervisor to
learn about the behavior of the VMs over the time, which
enables it to adjust the detection load distribution in such a
way that assigns more load to the VMs that have a large
number of misbehavior during their past history. Besides
the incremental learning property that our solution offers to
the hypervisor, the fact that trust is a private relationship

TABLE 2
Datacenter Properties

Parameter Value

Number of physical hosts 5
System architecture x86
Operating system Linux
Virtual Machine Monitor Xen
Number of VMs 10, 20, 30, 40, and 50
Number of CPU cores per VM 5
CPU speed per VM 1,000 MIPS
RAMmemory per VM 16 GB
Hard drive storage per VM 976.5625 GB
Network bandwidth share per VM 50,000 Kbit/s

5. https://aws.amazon.com/ec2/details/
6. https://snap.stanford.edu/data/soc-Epinions1.html
7. http://aws.amazon.com/ec2/pricing/
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between the hypervisor and VMs reduces the possibility of
the attacker to predict the potential detection load distribu-
tion strategy that will be adopted by the hypervisor (i.e., the
attacker is unable to know which VMs are the most trusted
by the hypervisor to attack through). Per contra, in the
price-based model, the attacker may anticipate, for example,
that the hypervisor would dedicate more detection load to
the more valuable VMs (knowing that the VMs’ prices are
publicly available for users) and adjust hence its attack dis-
tribution strategy accordingly.

Fig. 3b measures the false negative percentage that
quantifies the percentage of attacks that the system was
not able to capture during the detection process. This
percentage is computed by subtracting the probability
distributions of the attacker from those of the hypervisor
when the values of the former are greater. The average
false negative rate a½t1;t2� during the time window ½t1; t2�
is computed as follows:

a½t1;t2� ¼
Xt2
x¼t1

X
v2V

ðqxðvÞ � pxðvÞÞ
t2 � t1

for each qxðvÞ > pxðvÞ: (13)

The false negative rate in the example given in Section 6
would be: a ¼ ½ð0:3979� 0:3011Þ� ¼ 0:0968. Thus, the
percentage of false negatives entailed by our model in the
given example is: 0:0968� 100 ¼ 9:68% . Fig. 3b shows that
our model diminishes the false negative of the IDS for the
same arguments explained in the context of attack detec-
tion. Intuitively, decreasing false negatives is an automatic
result of increasing attacks detection.

Fig. 3c measures the percentage of false positive incurred
by the studied detection models. This metric is of prime
importance in our case since it can tell us the percentage of
resources wasted by the system during the detection pro-
cess. Intuitively, false positive measures in our case the
percentage of resources spent by the hypervisor in monitor-
ing the VMs while these VMs are not sending any attack
fragment. It is obtained by subtracting the probability distri-
butions of the hypervisor from those of the attacker when
the values of the former are greater. The average rate of
resources wasted g½t1;t2� during the time window ½t1; t2� is
computed as follows:

g ½t1;t2� ¼
Xt2
x¼t1

X
v2V

ðpxðvÞ � qxðvÞÞ
t2 � t1

for each pxðvÞ > qxðvÞ: (14)

The false positive rate in the example given in Section 6
would be: g ¼ ½ð0:3562� 0:2875Þ þ ð0:3427� 0:3146Þ� ¼ 0:0968.
Thus, the percentage of false positives entailed by our
model in the given example is: 0:0968� 100 ¼ 9:68%. Fig. 3c
shows that our model is able to considerably reduce the
percentage of false positives compared to the other two
models. This is justified by the fact that our model guides
the hypervisor on the optimal distribution of detection load
that best synchronises with the attacker’s probability distri-
butions of the DDoS attacks.

Fig. 4 is introduced to study the effectiveness of the pro-
posed model in minimizing the cloud system’s resources
consumption when this system faces DDoS attack scenarios.
Fig. 4a measures the CPU consumption of the cloud system

Fig. 3. Our model increases the percentage of detected attacks and decreases the percentages of false negatives and resources wastage compared
to the price-based maximin and the fair allocation strategy.

Fig. 4. Our model minimizes the CPU, memory, and network bandwidth usage under DDoS attack compared to the price-based maximin and the fair
allocation strategy.
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under DDoS attacks. Practically, we measure the percentage
of CPU that is being consumed by the VMs in the presence
of both legitimate requests coming from well-behaving
VMs and fake (malicious) requests coming from malicious
or compromised VMs. Fig. 4a reveals that using our pro-
posed model minimizes the cloud system’s CPU consump-
tion under DDoS. Indeed, the fact that our model augments
the attack detection and decreases the false positive and
negative percentages enables the hypervisor to optimize its
resources allocation strategy by limiting the CPU portion
assigned to the VMs that are detected to be generating mali-
cious requests, which helps thus save the system’s resources
and restrict the wastage. Similarly, Fig. 4b demonstrates that
applying our solution minimizes the cloud system’s mem-
ory consumption compared to the price-based maximin and
the fair allocation models. In fact, by enhancing the hyper-
visor’s ability to recognize the malicious requests, our
model mitigates the load put on the system’s memory by
these requests. Fig. 4c shows that our solution reduces the
network bandwidth’s consumption compared to the other
two models. This is due to the effectiveness of our model in
identifying attacks, which reduces the flux of the malicious
traffic on the datacenter’s network.

Moreover, it is worth noticing from Figs. 3 and 4 that the
performance of the different models either in terms of per-
formance metrics (attack detection, false positive, and false
negative) or in terms of resources consumption (CPU, mem-
ory, and bandwidth) decreases with the increase in the
number of VMs. This fact is expected since the more the
VMs deployed in a cloud infrastructure, the higher is the
freedom given to the attacker to divide its attacks over a
greater number of VMs and the less is the detection load
that the hypervisor might be able to dedicate for each single
VM. Though, our model is still far more resilient to a larger
number of deployed VMs thanks to the advantages
explained earlier that our solution brings, which supports
the scalability of our model.

We study in Fig. 5a the average time taken by the VMs to
respond to the assigned tasks. This metric is obtained by
subtracting the tasks’ end time from the tasks’ start time for
each VM and averaging these times over all the cloud sys-
tem’s VMs. The results demonstrate that our model aids in
reducing the servicing time compared to the price-based
maximin and fair allocation models. The reason is that our
model is able to maximize the detection of the DDoS attacks,
which helps reduce the congestion on the cloud system’s

resources and assists hence the legitimate tasks in being
accomplished in a more efficient fashion.

Finally, Fig. 5b measures the efficiency of the three studied
models in terms of their execution time with the variation in
the number of VMs. The results reveal that the fair allocation
model performs faster than both our model and the price-
based model. This result is expected since the fair allocation
model divides simply the detection load equally among VMs,
which alleviates the time spent on computing the optimal
detection load distribution. Moreover, the price-based model
performs a bit faster than our model. This time difference
may be thought of as the time needed by our model to collect
and compute the trust scores for the VMs and adding these
scores to the utility functions. In addition, we can notice from
the results that our model takes around 4.4 seconds to com-
pute the optimal detection load distribution for a cloud sys-
tem consisting of 50 VMs, which boosts the efficiency of our
solution. Moreover, by inspecting Fig. 5b, we can notice that
the time complexity of the model grows polynomially with
the increase in the number of VMs, which upholds the feasi-
bility of ourmodel in large-scale cloud datacenters.

8 CONCLUSION

In this work, we tackled the problem of maximizing the
detection of VM-based DDoS attacks in cloud systems. For
this purpose, we proposed first a trust model that combines
objective (monitoring) and subjective (recommendations)
trust sources and employs the Bayesian inference to aggre-
gate them so as to build credible trust relationships between
the hypervisor and guest VMs. On top of this model, we
introduced and solved a trust-based hypervisor-attacker
maximin game wherein the hypervisor seeks to maximize
the detection probability under a limited budget of resour-
ces, knowing that the attacker is trying to minimize this
maximization by intelligently distributing the DoS attacks
over several VMs. By solving the game, the hypervisor
learns about the optimal distribution strategy of detection
load among VMs that maximizes the detection of DDoS
attacks. Promisingly, a series of experimental comparisons
with a benchmark consisting of the price-based maximin
and fair allocation detection load distribution strategies
reveal that our solution maximizes the detection of DDoS
attacks up to 	 26 percent and minimizes the false positives
and negatives by 	 20 percent. Moreover, our solution
proves to be able to minimize the cloud system’s CPU

Fig. 5. Our model reduces the tasks’ servicing time compared to the price-based maximin and the fair allocation strategy and is efficient in terms of
execution time.
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consumption by 	 15 percent, memory consumption by
	 11 percent, and network bandwidth consumption by 	 5
percent under DDoS scenarios. Lastly, the proposed solu-
tion performs efficiently in large-scale data centers, where it
takes 	 4:4 s to run in a cloud system consisting of 50 co-
hosted VMs.
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