
Resource-Aware Detection and Defense System
against Multi-Type Attacks in the Cloud:
Repeated Bayesian Stackelberg Game

Omar Abdel Wahab , Jamal Bentahar ,Member, IEEE, Hadi Otrok , Senior Member, IEEE,

and Azzam Mourad , Senior Member, IEEE

Abstract—Cloud-based systems are subject to various attack types launched by Virtual Machines (VMs) manipulated by attackers

having different goals and skills. The existing detection and defensemechanismsmight be suitable for simple attack environments but

become ineffective when the system faces advanced attack scenarios wherein simultaneous attacks of different types are involved. This

is because thesemechanisms overlook the attackers’ strategies in the detection system’s design, ignore the system’s resource

constraints, and lack sufficient knowledge about the attackers’ types and abilities. To address these shortcomings, we propose a

repeated Bayesian Stackelberg game consisting of the following phases: risk assessment framework that identifies the VMs’ risk levels,

live-migration-based defensemechanism that protects services from being successful targets for attackers, machine-learning-based

technique that collects malicious data fromVMs using honeypots and employs one-class Support Vector Machine to learn the attackers’

types distributions, and resource-aware Bayesian Stackelberg game that provides the hypervisor with the detection load’s optimal

distribution over VMs that maximizes the detection of multi-type attacks. Experiments conducted using Amazon’s datacenter and

AmazonWebServices honeypot data reveal that our solutionmaximizes the detection, minimizes the number of attacked services, and

runs efficiently compared to the state-of-the-art detection and defense strategies, namelyCollabra, probabilistic migration, Stackelberg,

maxmin, and fair allocation.

Index Terms—Adversarial artificial intelligence, intrusion detection, game theory, machine learning, data-driven optimization,

Moving Target Defense (MTD), honeypots, security risk assessment

Ç

1 INTRODUCTION

SECURITY concerns have accompanied the notion of cloud
computing since its inception until now. On the one

hand, it is crucial to assure security in cloud systems since
cloud data centres are supposed to provide a safe and
secure environment for users and providers to host and
access their data and resources. On the other hand, cloud-
based systems are exposed to a wide set of security threats;
even more than those that target traditional computing sys-
tems because of the cloud’s virtual and elastic properties
[1]. Practically, each operation/communication occurring at
the cloud’s virtualization layer (e.g., CPU virtualization,
memory management, etc.) can be subject of various

malicious attacks. Although the common high-level goal of
all attackers is to cause financial/performance damage, the
low-level objective of each particular attacker varies accord-
ing to the attack’s target and magnitude of damage intended
to cause. For example, some attackers might aim to crash the
hypervisor to stop the functioning of the whole cloud sys-
tem, whilst others might be interested in disrupting some
particular VMs pertaining to a specific client. We consider
in this work a complex and realistic attack scenario in which
the cloud system faces multiple simultaneous types of
attacks launched by attackers having distinct skills and
objectives. The considered attackers are deemed to be intel-
ligent in the sense that they are continuously observing the
detection strategies of the cloud systems and updating their
attack strategies accordingly with the aim of maximizing
their attack success chances.

Problem Statement.Although plenty of Intrusion Detection
Systems (IDSs) for cloud-based applications can be found in
the literature, most of these techniques are developed and
upgraded from traditional detection techniques used in non-
cloud environments, which limits their effectiveness when
applied in a cloud setting [1]. In fact, the existing detection
systems can be classified into three main branches: network-
based, host-based, and hypervisor-based IDSs [1]. Network-
based systems put the monitoring agents at the network’s
level to monitor the circulating traffic and recognize any
malicious behavior. The fact that these systems operate at the

� O. Abdel Wahab is with the Department of Computer Science and
Engineering, Universit�e du Qu�ebec en Outaouais, Gatineau, QC J8X 3X7,
Canada. E-mail: omar.abdulwahab@uqo.ca.

� J. Bentahar is with the Concordia Institute for Information Systems
Engineering, Concordia University, Montr�eal, QC H3G 1M8, Canada.
E-mail: bentahar@ciise.concordia.ca.

� H. Otrok is with the Department of ECE, Khalifa University of Science,
Technology and Research, Abu Dhabi, UAE.
E-mail: Hadi.Otrok@kustar.ac.ae.

� A. Mourad is with the Department of Mathematics and Computer Science,
Lebanese American University, Beirut, Lebanon.
E-mail: azzam.mourad@lau.edu.lb.

Manuscript received 8 Mar. 2018; revised 29 Dec. 2018; accepted 24 Mar.
2019. Date of publication 27 Mar. 2019; date of current version 12 Mar. 2021.
(Corresponding author: Omar Abdel Wahab.)
Digital Object Identifier no. 10.1109/TDSC.2019.2907946

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021 605

1545-5971 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3991-4673
https://orcid.org/0000-0002-3991-4673
https://orcid.org/0000-0002-3991-4673
https://orcid.org/0000-0002-3991-4673
https://orcid.org/0000-0002-3991-4673
https://orcid.org/0000-0002-3136-4849
https://orcid.org/0000-0002-3136-4849
https://orcid.org/0000-0002-3136-4849
https://orcid.org/0000-0002-3136-4849
https://orcid.org/0000-0002-3136-4849
https://orcid.org/0000-0002-9574-5384
https://orcid.org/0000-0002-9574-5384
https://orcid.org/0000-0002-9574-5384
https://orcid.org/0000-0002-9574-5384
https://orcid.org/0000-0002-9574-5384
https://orcid.org/0000-0001-9434-5322
https://orcid.org/0000-0001-9434-5322
https://orcid.org/0000-0001-9434-5322
https://orcid.org/0000-0001-9434-5322
https://orcid.org/0000-0001-9434-5322
mailto:
mailto:
mailto:
mailto:

network’s layer only makes them unable to catch insider
attacks that sneak into the internal virtualized system. To
remedy this shortcoming, host-based IDSs deploy the moni-
toring agents at the VMs’ layer to monitor their activities and
report any abnormal behavior. The main limitation of this
approach lies in the burdens it puts on the users who are
required to spend their own resources and efforts to main-
tain the health of the monitoring agents. To alleviate these
burdens, hypervisor-based systems place the monitoring
agents at the cloud system’s layer and assign to the host
hypervisors the role of observing the VMs’ system metrics
and identifyingmalicious activities.

Unfortunately, all of the three branches of IDSs suffer
from four essential problems that limit their performance in
practical cloud systems. First, they are based on the simplis-
tic idea of monitoring and analyzing events without account-
ing for the malicious strategies of the attackers that take
advantage of the cloud’s virtual and elastic features to per-
plex the detection system and complicate the detection pro-
cess [1]. This raises the need for elaborating an up-to-date
intelligent detection technique that considers the strategies
of the attackers in its design to increase the awareness of the
cloud system and enable it to cope with complex attack sce-
narios. Second, the current IDSs do not explain how to deal
with the cloud system’s limited security resources problem
in the detection process; thus assuming (directly or indi-
rectly) that the cloud system is able to provide permanent
and full detection coverage on all its nodes. However, it is no
secret that the magnitude of resources that can be devoted to
detection is bounded by a certain budget that is determined
in such a way that does not affect the portion of resources
consecrated to serving clients. This necessitates thinking of a
resource-aware selective detection strategy that distributes
the cloud system’s detection load among the different VMs
so that it respects the limited security resources’ budget and
maintains at the same time optimal detection effectiveness.
Third, the existing IDSs rely on a simplistic attack scenario
which supposes that attackers launch their attacks without
having prior knowledge of the intrusion detection arrange-
ments adopted by the cloud system. Albeit such an assump-
tion might hold for some limited time, attackers are
becoming smart enough to observe the cloud system’s detec-
tion strategies over time and adjust their own attack strate-
gies accordingly in order to complicate and confuse the
detection process. Fourth, the current detection approaches
lack for real-time learning about the types and objectives of
the attackers targeting the cloud system; which deprives
them from valuable information that can be used to adjust
and optimize the cloud system’s detection strategies over
time.

Contributions. The goal of this work is to develop a com-
prehensive detection and defense mechanism against multi-
type attacks in the cloud. To the best of our knowledge, this
work is the first that advances such a comprehensive detec-
tion and defense strategy against multiple types of attacks
in the domain of cloud computing. The proposed solution is
presented in the form of a repeated Bayesian Stackelberg
game that consists of four phases executed repeatedly to
provide the cloud system with incremental and continuous
learning about the attackers’ strategies and objectives and
the VMs’ actual security status. The first phase is concerned

with evaluating the risk level of each VM on the basis of its
potential vulnerabilities, expected threats, and past attack
history. Based on the results obtained from the risk assess-
ment phase, the services deployment phase introduces an
intelligent defense mechanism inspired by the Moving Tar-
get Defense (MTD) concept [2], which migrates services
running inside risky VMs toward other more secure VMs.
The risky VMs, running no active services, are exploited in
the attackers’ types recognition phase through deploying
honeypots [3] inside them to collect malicious data from
attackers. This data is then analyzed using a one-class Sup-
port Vector Machine (SVM) learning classifier [4] to deter-
mine the types and objectives of the attackers targeting the
cloud system. Using this information, we design a resource-
aware Bayesian Stackelberg game whose goal is to provide
the cloud system with the optimal detection load distribu-
tion strategy over the set of VMs that maximizes the detec-
tion of simultaneous attacks of multiple types. In summary,
the main contributions of this work are:

� Designing and solving a Bayesian Stackelberg game
that guides the cloud system to determine the opti-
mal detection load distribution strategy among VMs
that maximizes the detection of multi-type intelligent
attacks. To the best of our knowledge, this strategy is
the first in the domain of cloud computing that is
able to maximize the detection in such a complex
(yet realistic) attack environment wherein the cloud
system is supposed to face simultaneous attacks of
different types launched by intelligent attackers.

� Proposing a risk assessment framework that assists
the cloud systemwith evaluating the risk level of each
VM and identifying the risky ones that are likely to be
targets for attacks. For this purpose, we formulate a
risk level determination model that capitalizes on the
VMs’ potential vulnerabilities, expected threats, and
past attack history tomake thoughtful decisions.

� Developing an MTD-based defense mechanism that
protects cloud services from being successful targets
for attackers. This is done by putting forward an
intelligent security-oriented live migration strategy
that allows the hypervisor (acting on behalf of the
cloud system) to migrate the services running inside
risky VMs to other more secure ones.

� Putting forward an attackers’ types recognition tech-
nique that provides the hypervisor with a detailed
view of the types and objectives of the attackers tar-
geting the cloud system. This is achieved by devel-
oping a honeypots’ deployment strategy inside risky
VMs to collect malicious data and proposing a one-
class SVM learning classifier which analyzes this
data and predicts the actual types of the attackers.

The performance of the proposed solution is evaluated
using real data from Amazon’s public datacenter’s [5] and
honeypot data fromAmazonWeb Services (AWSs) [6]. Exper-
imental results reveal that our solution maximizes the detec-
tion performance and minimizes the number of attacked
services compared to the existing detection and defense strat-
egies, namely Collabra, probabilistic migration, maxmin, one-
stage Stackelberg, and fair allocation.Moreover, experimental
results show that our solution achieves acceptable execution

606 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

time and is scalable to the increase in both the number of
co-hosted VMs and percentage of co-residentmalicious VMs.

Paper Outline. Section 2 reviews the current IDSs
proposed for cloud-based environments. In Section 3, we
formulate the problem and illustrate the attack model con-
sidered in this work. In Section 4, we design the Bayesian
Stackelberg game proposed to derive the optimal detection
load distribution strategy among VMs and demonstrate
how to solve it using the backward induction reasoning.
Section 5 explains the details of the repeated Bayesian Stack-
elberg game that provides a comprehensive detection and
defense system. In Section 6, we describe the experimental
environment and present experimental results. In Section 7,
we provide a detailed discussion on the originality of this
work compared to the state-of-the-art. Finally, Section 8
recapitulates the main insights of the paper.

2 RELATED WORK

The main intrusion detection techniques proposed for
cloud-based systems can be classified into three major cate-
gories: network-based, host-based, and hypervisor-based
systems [1].

2.1 Network-Based IDSs

In [7], the authors discuss an intrusion detection framework
that monitors network traffic using a cluster-based architec-
ture to support multiple security domains. The basic idea is
to export the intra-VM network traffic to be processed by a
physical IDS. Moreover, a traffic deduplication technique is
advanced to remove redundant network traffic and mini-
mize the overhead.

In [8], a customer-controllable on-demand IDS is
introduced. The network interactions among VMs within a
pre-defined virtual network are monitored and suspicious
activities are registered and analyzed. The performance of
the framework is adaptable based on the volume of traffic
load in the network, where, for example, the number of IDS
components can be adjusted on the basis of the amount of
traffic circulating inside the network.

DoS attacks have been studied in [9], where the authors
offered amethod to trace the botmaster (i.e., administrator of
the botnets) back. According to this method, the local net-
work admin of the victim node has to gather data related to
the network traffic between the Command-and-Control
(C&C) servers and bots as well as the hostname of the C&C
server. This data is then communicated to a traceback service
whose role is to embed Prebbleware, a piece of code that
uncovers its host machine’s information, on the communica-
tion packets between the botmaster and victimmachine.

2.2 Host-Based IDSs

In [10], a multi-tier detection model for large-scale clouds
called Varanus is proposed. The basic idea is to split VMs
into a set of groups using the k-nearest neighbor algorithm
based on the similarity among their configuration settings.
Thereafter, the VMs belonging to the same cluster exchange
their monitoring information and the under-utilized VMs
are selected to analyze the whole collected data.

In [11], the authors discuss a host-based intrusion detec-
tion technique that selectively monitors (only) the failed

system call traces of the VMs. These traces are then ana-
lyzed and classified either normal or malicious using
k-nearest neighbor. Finally, users are alerted of any mali-
cious activity in their system.

2.3 Hypervisor-Based IDSs

In [4], the authors propose an online anomaly detection tech-
nique that operates at the hypervisor’s layer. The system
architecture consists of four main components, namely the
Cloud Resilience Manager (CRM), System Resilience Engine
(SRE), Network Analysis Engine (NAE), and System Analy-
sis Engine (SAE). At the first stage, the CRM deployed on
each cloud node collects features from the VMs and their
local networks and sends this data to the NAE and SRE com-
ponents. These two latter components employ the one-class
SVM to carry out a local anomaly detection.

The authors of [12] advanced Collabra, a distributed IDS
that is integrated into Xen hypevisors to preserve the secu-
rity of the cloud system. Collabra scans each hyper-call
made by every application of the VMs to guarantee the
integrity of the cloud infrastructure and ensure fail-safe
transaction processes. Collabra performs in a collaborative
fashion to enhance the results of the real-time detection.

Lombardi and Di Pietro propose in [13] a virtualization-
supported detection technique called Advanced Cloud Pro-
tection System (ACPS). In ACPS, the system-call invocations
of the VMs are constantly watched by an entity situated in
the kernel space of the host called Interceptor. The suspected
activities are then registered and prioritized into a Warning
Pool. Finally, the Evaluator entity inspects these activities to
make the appropriate decision on whether there exists a
security threat or not.

2.4 Game-Theoretic Approaches for Security
Applications

In [14], the authors aim to answer the challenge of efficiently
deploying MTD techniques in large-sized networked sys-
tems. To this end, they propose to integrate the Shuffle,
Diversity, and Redundancy MTD techniques into the Hier-
archical Attack Representation Model (HARM) to assess
their security levels. They employ as well several impor-
tance measures to choose highly important network compo-
nents on which MTD techniques should be deployed.

In [15], the authors propose anMTD technique to improve
the security of Web applications. They modeled the problem
as a Bayesian Stackelberg game whose leader is the Web
administrator and followers are the hackers which can be of
different types. They formulated an optimization problem
whose solution guides the administrator to find the configu-
ration switching strategy that best maximizes the system’s
securitywhile accounting for the associated switching costs.

In [16], a systematic framework is introduced to derive the
optimal defense allocation strategies under interdependen-
cies (e.g., assets owned by the same vendor), where such
interdependencies are modeled using an interdependency
graph.Attackers are thus assumed to take advantage of those
interdependencies to attack valuable assets in the network.
Specifically, a game is modeled among multiple defenders,
each of which is responsible for protecting a set of assets. The
objective of each defender is to minimize its own expected
loss knowing that the attack probabilities on its assets

WAHAB ET AL.: RESOURCE-AWARE DETECTION AND DEFENSE SYSTEM AGAINST MULTI-TYPE ATTACKS IN THE CLOUD: REPEATED... 607

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

depend on its own defense actions, the actions of the other
defenders, and the interdependency graph.

In [17], the authors formulate a game theoretical model
between an external adversary and a network of decoy nodes
and propose a framework of two phases. In the first phase,
the interactions between the adversary and one single decoy
node are studied, especially the cases where the adversary
(1) tries to recognize the decoy node through observing the
timing of node responses, and (2) studies the differences in
protocol implementations between decoy and real nodes in
order to identify the decoy ones. The outcome of this phase is
the time for an adversary to learn whether a certain node is
real or decoy. In the second phase, games between an adver-
sary trying to discover real nodes in a network of real and
decoy nodes are formulated. The outcome of this phase is the
optimal policy of the system to randomize the IP address
space to complicate the recognition of real nodes.

While MTD-based techniques and Bayesian Stackelberg
games have already been used in the security domain, our
work is the first that employs them in a cloud computing
environment to model the hypervisor-VM relationship,
while taking into account that the attacks can be distributed
across several VMs to complicate the detection process.
Moreover, we propose in this work a risk assessment strat-
egy to evaluate the risk level of each VM, followed by a hon-
eypot deployment technique to collect data from attackers
and a machine learning technique to analyze this data and
extract relevant knowledge regarding the attacker types’
probability distributions. This information is then integrated
into a Bayesian Stackelberg game to optimize the intrusion
detection decisions. Such a data-driven optimization meth-
odology for improving the security decisions in terms of
detecting multi-type attacks is novel and has not been
employed yet in the literature.

2.5 Discussion and Unique Features of Our Solution

The existing IDSs suffer from two principal limitations that
make them insufficient to deal with practical cloud-based
systems. In the first place, they totally ignore the attackers’
strategies in the design of the detection system, which mini-
mizes their chances of capturing sophisticated attacks. In the
secondplace, they do not explain how the proposeddetection
techniques can work under a limited budget of security
resources, which restricts their effectiveness in realistic
resource-constrained applications. In a recent work [1], a
maxmin-based detection load distribution strategy has been
developed by our research group. Specifically, a maxmin
game is modeled between the attackers trying to minimize
the cloud system’s detection probability by distributing their
attacks over a set of VMs and the hypervisor trying to maxi-
mize this minimization by optimally distributing the detec-
tion load among VMs. Similar to our current work, this work
takes into consideration the strategies of the attackers in the
design of the detection systemand is able towork using a lim-
ited budget of security resources. Beyond thiswork, our solu-
tion is able to deal with a more complex attack scenario
wherein attackers are able to observe the cloud system’s
detection strategies and adapt their attack plans accordingly.

In a preliminary version of this work, we proposed a one-
stage Stackelberg game [18] that provides the hypervisor with
the optimal detection load distribution strategies; while

considering the strategies and abilities of the attacker but
abstracting on the types of attackers. This paper builds on and
extends our previous work by offering (1) a risk assessment
framework that helps the hypervisor determine the risk level
on each VM; (2) anMTD-based defensemechanism that intel-
ligentlymigrates services running inside risky VMs into other
more secure VMs; (3) an attackers’ types recognition tech-
nique that collects malicious data from VMs using honeypots
and analyzes them using one-class SVM; and (4) a Bayesian
Stackelberg game that accounts for the distributions of the
attackers’ types in the design of the problem to increase the
awareness of the hypervisor and help it optimize its detection
load distribution strategies. Finally, our solution runs in a
repeated fashion to provide the hypervisor with incremental
and continuous learning about the attackers strategies and
skills and the cloud system’s current security status. The two
versions are compared experimentally as well to verify the
improvements brought to thework by our new amendments.

3 PROBLEM FORMULATION

We illustrate in this section the problem formulation and
explain the attack model considered in the rest of the paper.

3.1 System Model

Our system model consists of a set of virtual machines V ¼
fv1; v2; . . . ; vkg hosted on a shared hypervisor. Note that
when i 2 f1; . . .; kg can be understood from the context, we
simply use v instead of vi. These VMs might be either well-
behaving or attacking.Well-behaving VMs are those that aim
at doing their jobs smoothly without having the intention to
harm neither the cloud system nor other VMs. On the other
hand, attacking VMs seek to harm the cloud system and/or
other co-hosted VMs by continuously and collaboratively
sending malicious code fragments to form distributed mali-
cious attacks. Such VMs might be either (1) malicious in case
their real owners create the attacks or (2) compromised in
case the source of attacks is a third party that manipulates
VMs and injects its malicious code through them.1 Each
attacking VM is of type y 2 Y , where Y denotes the set of all
attackers’ types (e.g., privilege escalation, DoS attackers, etc).
Knowing this fact, the cloud system has to find the optimal
detection strategy that maximizes the detection of such
attacks. To do so, the hypervisor, acting on behalf of the cloud
system, has a specific amount of resources R that comprises
both the amount Rc of resources to be dedicated to serving
clients and the amount Rd of resources to be dedicated for
intrusion detection such that R ¼ Rc þRd. Thus, the objec-
tive of the hypervisor becomes finding the optimal detection
load distribution strategy thatmaximizes the detection of dis-
tributed attacks, while respecting the budget Rd of resources.
We model this situation as a repeated Bayesian Stackelberg
security game of two players, i.e., hypervisor and attackers.
In game theory, a game is said to be Bayesian if some players
are unsure about the types, preferences, or payoffs of other
players [19]. Our game is Bayesian since the hypervisor is
uncertain about the types of attackers that might be targeting
the cloud system. Specifically, we consider an attack model

1. In the rest of the paper, the term attacker is used to refer to both
cases.

608 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

in which multiple attackers of different types (e.g., Denial of
Service, privilege escalation, etc.) are expected to target the
cloud system. The game is played sequentially in the sense
that the hypervisor representing the leader of the game com-
mits first to a certain detection load distribution strategy and
then attackers (followers of the game) choose their attack dis-
tribution strategy after having observed the hypervisor’s
strategy implementation. Note that the proposed game is
dynamic. Specifically, a game is said to be dynamic if it satis-
fies one of the two following conditions [20]. The first condi-
tion is achieved when the interaction among players is itself
inherently dynamic in the sense that the players are able to
observe each other’s actions prior to making decisions
regarding their optimal responses. The second condition is
achievedwhen a one-off game is repeated a number of times,
thus allowing players to examine the outcomes of previous
games before playing later ones. Our proposed game satisfies
both conditions and can hence be considered a dynamic
game. In fact, we assume that attackers have the ability to
observe the security arrangements adopted by the hypervisor
over time to learnwhich VMs are better protected than others
and update their attack strategies accordingly. Moreover, our
game is played repeatedly, where at each stage of the game,
the probability distributions over the attacker types and the
utility of the hypervisor for each of its VMs are (potentially)
subject to change (see Section 5 formore details).

In the following, we define the individual utility functions
for both hypervisor and attacker. In fact, based on the strate-
gies adopted by both the hypervisor and attacker, a reward
is assigned to each of these parties. Particularly, when the
hypervisor, facing an attack of type y, selects the pure strat-
egy i (i.e., monitoring vi) and the attacker selects the pure
strategy j (i.e., attacking through vj), the hypervisor receives
a reward ofRy

ijðtÞ and the attacker receives a payoff ofQy
ijðtÞ.

The reward function of the hypervisor is defined as follows:

Ry
ijðtÞ ¼

�h
vi
ðtÞ � wh

vi
�monvi ; if i ¼ j

�wh
vj
� kyvj �monvi ; if i 6¼ j

(
: (1)

The first part of this reward function represents the success
of the hypervisor in protecting the virtual machine vi 2 Vi of
worth wh

vi
(the worth of a VM depends mainly on its price as

well as on its hardware, network, and storage configuration)
minus the cost monvi of monitoring the virtual machine
vi 2 V . Since the success of detection depends heavily on the
IDS’s detection probability as mentioned earlier, the reward
of the hypervisor at time t is weighed based on its accumu-
lated average detection success rate �h

vi
ðtÞ for all times prior

to t (i.e., based on the historical data of the previous detection
processes). The second part of the reward function repre-
sents the loss of the hypervisor incurred by not monitoring
the VM vj that is being attacked, which is function of the
worth of that VM for the hypervisor times the degree of dam-
age kyvj caused by the attack of type y on vj, minus the moni-
toring cost of the VM vi that was not targeted by the attack.

Then, the utility of the hypervisor for each VM vi can be
modeled as the discounted sum of the reward function
Ry

ijðtÞ across time periods and is depicted as follows:

Uy
ij ¼

Xt2
t¼t1

b1=t �Ry
ijðtÞ: (2)

The reason we multiply the reward function Ry
ijðtÞ by b1=t

is to give more weight to the recent rewards compared to
the older ones in the time interval ½t1; t2�.

On the other hand, the attacker’s payoff Sy
ij would be:

Sy
ijðtÞ ¼

wa
vj
� kyvj � attvj ; if i 6¼ j

�wa
vi
� �a

vi
ðtÞ � attvi ; if i ¼ j

�
: (3)

This first part of the attacker’s payoff function represents
the success of the attacker in assaulting through VM vj that
has not been monitored by the hypervisor, which is function
of the worth of vj multiplied by the degree kyvj of damage

caused by attacking through vj minus the cost attvj of prepar-
ing the attack on vj. The second part of the reward function
represents the attacker’s failure in launching its attack
through VM vj, which is function of the worth of that VM
times the probability �a

vi
ðtÞ that the attack through this moni-

tored VM would be actually captured by the hypervisor
(based on the attacker’s historical observations), minus the
cost attvi of launching the attack through this VM.

Then, the utility of the attacker for each VM vi can be
modeled as the discounted sum of the reward function
Qy

ijðtÞ across time periods and is depicted as follows:

Qy
ij ¼

Xt2
t¼t1

b1=t � Sy
ijðtÞ: (4)

3.2 Overview of Existing Vulnerabilities and Attacks
on Virtual Machines

We consider in this work the attacks that occur at the cloud
system’s virtualization surface which offers attackers with a
new appealing security attack vector. Roughly speaking,
each functionality provided by the hypervisor (e.g., CPU vir-
tualization, VMmanagement, etc.) can include some vulner-
abilities that attackers might exploit to carry out their
malicious activities. We discuss in the following some of the
attacks that might be exerted against the cloud system w.r.t
the corresponding vulnerabilities that might be exploited to
carry out such attacks. These attacks have been utilized
when performing our experiments as will be explained in
Section 6. The list of attacks along with their corresponding
vulnerabilities are summarized in Table 1. These attacks
have been inspired by the list of cloud-specific vulnerabilities
identified in [21] as a recapitulation of some real vulnerabil-
ities collected from the National Institute of Standards and
Technology (NIST)’s National Vulnerability Database
(NVD) [22], SecurityFocus [23], Red Hat’s Bugzilla [24] and
Code Vulnerabilities and Exposures (CVEs) [25]. The attacks
include co-hosted VMs’ memory modification, DoS, virtual
machine destruction, virtual machine crash, and privilege
escalation. The details about these attacks and how they
could be technically carried out can be found in Appendix A,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/TDSC.2019.2907946.

3.3 Assumptions

The following assumptions are considered in the rest of the
paper:

1) Our solution is designed to model situations in which
the hypervisor has a fixed, limited, and known budget

WAHAB ET AL.: RESOURCE-AWARE DETECTION AND DEFENSE SYSTEM AGAINST MULTI-TYPE ATTACKS IN THE CLOUD: REPEATED... 609

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/TDSC.2019.2907946

of security resources Rd that it cannot exceed when
distributing the detection load over VMs. We thus
assume that the hypervisor cannot provide full and
permanent detection coverage on all VMs at all times
since this will have negative effects on the share of
resources dedicated to serving clients and would lead
hence to decrease the overall revenue of the cloud
providers.

2) We assume that VMs worth differently for the hyper-
visor and attackers. This assumption is realistic since
each of these parties uses different criteria to evalu-
ate the importance of VMs. For example, the hyper-
visor might be more interested in the prices of the
VMs, while the attacker might care more about the
sensitivity of the data contained in the VM and/or
the potential vulnerabilities that are present on the
VM.

3) The utility functions are designed in such a way that
makes the hypervisor not allocate any detection load
to those VMs, V � V , whose monitoring cost monðv0Þ
exceeds their worthwhðv0Þ for the hypervisor, 8v0 2 V.
This vision is mathematically implemented in Eq. (1)
by designing the hypervisor’s utility for a certain VM
in such a way to be negative when the monitoring
cost of that VM is lower than its worth.

4) We assume that attackers can, over time, get an idea
of how the hypervisor is choosing the VMs to put
more detection load on. For example, after a certain
number of attack attempts on some VMs that have
particular configurations/characteristics, the attacker
might infer that all VMs having such configurations/
characteristics are highly monitored and hard to
attack and hence it will move to attacking other VMs.
This might be considered as a basic and incremental
learning process. Specifically, we do not assume that
the attacker is able to immediately learn the hyper-
visor’s strategy. Instead, the attacker observes the

previousmoves of the hypervisor (as is the case in tra-
ditional Stackelberg games). However, the attacker
does not solely rely on its immediate previous obser-
vation; but instead it capitalizes on the cumulative
learning over time (obtained through multiple previ-
ous moves) to play its best response to the hyper-
visor’s strategies.

3.4 Illustrative Example

The core challenge in designing a Bayesian Stackelberg game
is to populate the payoff matrices of both the hypervisor and
attackers in a meaningful fashion. To do so, let’s first con-
sider a cloud system consisting of three VMs v1, v2, and v3
hosted on top of hypervisor h at time t. In Table 2, we high-
light the worth of each of those VMs for the hypervisor, the
cost entailed by monitoring each single VM, and the poten-
tial damage that might arise from attacking each VM. Simi-
larly, we show in Table 3 the worth of each considered VM
for the attacker, evaluate the cost entailed by launching an
attack through each of these VMs, and highlight the degree
of damage that the attacker might cause through launching
attacks through each particular VM. Assume now that the
average detection success rate of the hypervisor over the
three VMs is 0.7 (i.e., �h

v1
ðtÞ ¼ �h

v2
ðtÞ ¼ �h

v3
ðtÞ ¼ 0:7) and that

the average attack sucess rate of the attacker over the three
VMs is 0.5 (i.e., �a

v1
ðtÞ ¼ �a

v2
ðtÞ ¼ �a

v3
ðtÞ ¼ 0:5). Suppose that

the cloud system is expected to face DoS attackers. Based on
the inputs from Tables 2 and 3 and the possible actions of
both players (i.e., hypervisor and attacker), Table 4 shows
the payoff values that each of these players would obtain.

In the payoff matrix (Table 4), the row represents the
hypervisor and the column represents the attacker. Thus,
RijðtÞ represents the hypervisor’s utility when this hypervi-
sor is monitoring vi while the attacker is launching its attack
through vj. Similarly, QijðtÞ represents the attacker’s utility
when this attacker is attacking through vj while the hypervi-
sor is monitoring vi. For example, when the hypervisor mon-
itors v1 and the DoS attacker chooses that same VM v1 to
launch attack through, the hypervisor’s payoff would be
RDoS

11 ðtÞ ¼ 0:7� 10� 3 ¼ 4 (Eq. (1)) for having successfully
protected v1 and the attackers’ payoff would be QDoS

11 ðtÞ ¼
�9� 0:5� 3 ¼ �7:5 (Eq. (3)). On the other hand, if the
hypervisor chooses to monitor v1 while attackers choose v2 to
attack through, then the hypervisor would undergo a

TABLE 2
Hypervisor’s Payoff (DoS)

VM Worth Damage Monitoring cost

v1 10 �3 3
v2 14 �1 6
v3 9 �1 2

TABLE 3
Attackers’ Payoff (DoS)

VM Worth Damage Attack cost

v1 9 4 3
v2 11 6 5
v3 6 1 0.5

TABLE 1
List of Attacks w.r.t the Associated Vulnerabilities

Attacks Vulnerabilities

Co-hosted VMs’ Memory Modification Soft Memory Management Unit
(MMU)

Denial of Service I/O and networking
Interrupt and timer
Paravirtualized I/O
VM exits

Virtual Machine Destruction VMManagement

Virtual Machine Crash Hypercalls

Privileges Escalation Symmetric Multiprocessing (SMP)
Remote Management Software
Hypervisor Add-ons

TABLE 4
Payoff Matrix (DoS)

VM v1 v2 v3

v1 4;�7:5 �33; 61 �33; 5:5
v2 �20; 33 3:8;�10:5 �20; 5:5
v3 �11; 33 �11; 61 4:3;�3:5

610 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

negative loss of RDoS
12 ðtÞ ¼ �9� 0:5� 3 ¼ �7:5 and the

attacker will have a positive payoff of QDoS
12 ðtÞ ¼ 11� 6�

5 ¼ 61. Having defined the utility matrices, the problem of
computing the optimal detection load probability distribu-
tion can now be solved using the simplex technique. For
space constraints, we are not able to show the details of this
technique. However, a detailed stepwise methodology for
solving optimization problems using simplex can be found
in our previouswork published in [1].

4 ADAPTIVE DETECTION LOAD DISTRIBUTION

STRATEGY: BAYESIAN STACKELBERG GAME

We formulate in this section the intrusion detection problem
as a Stackelberg security game between the cloud system
and attackers. Practically, the hypervisor (acting on behalf
of the cloud system) plays the role of the game leader and
makes the first move by choosing its detection load distribu-
tion strategy over VMs, whereas attackers are the followers
that observe the leader’s strategy (Assumption 4 - Section
3.3) and choose their best responses to it in terms of attack
distribution strategies. The backward induction reasoning
[26] is employed to determine the optimal strategies of both
the cloud system and attackers. This is done by first deriv-
ing the best response of the attackers to a (fixed) observed
strategy of the cloud system and then integrating this best
response to the cloud system’s optimization problem to
help it select the optimal detection load distribution strate-
gies. Intuitively, this means that the cloud system antici-
pates that attackers will play their best responses to its
(observed) detection load distribution strategy and embeds
this knowledge into its optimization problem to select the
optimal detection load distribution strategy using this infor-
mation. Let L and F denote the index sets of the hypervisor
(leader) and attacker’s (follower) pure strategies, respec-
tively. Let l represent a vector of the hypervisor’s pure strat-
egies (a.k.a hypevisor’s policy) and f represent a vector of
the attacker’s pure strategies (a.k.a attacker’s policy). Thus,
the value li would represent the proportion of times in
which the hypervisor plays the pure strategy i from its pol-
icy set, which means monitoring the VM vi. Similarly, the
value fj represents the proportion of times in which the
attacker plays the pure strategy j from its policy set, which
means attacking through VM vj.

Let us fix first the hypervisor’s policy to a certain policy l.
After observing l (i.e., the hypervisor’s vector of pure strate-
gies over time), the attacker needs to solve the following
linear programming optimization problem in order to deter-
mine its optimal response to l:

maximize
X
j2F

X
i2L

Qij � fj � li

subject to
X
j2F

fj ¼ 1;

fj 2 ½0; 1�; 8j 2 F:

(5)

Knowing the fixed strategy l of the leader, the best
response fjðlÞ of the attacker should yield a non-negative
utility to the attacker, which means that Problem (5) has to
satisfy the following constraint:

fj �
X
i2L

Qij � li � 0; 8j 2 F: (6)

Moreover, given that fjðlÞ is the attacker’s best response
strategy, any deviation from this strategy (i.e., 1� fj) would
lead the attacker to undergo a loss in terms of utility. Thus,
Problem (5) has to satisfy the following constraint as well:

ð1� fjÞ �
X
i2L

Qij � li � 0; 8j 2 F: (7)

In Eq. (7), fj represents the best pure strategy of the
attacker in response to the observed strategy li of the hyper-
visor. Thus, fj can be either 0 or 1. In case the best response fj
is set to 1 meaning that the attacker chooses to attack, then
the deviation from fj would be 1� fj ¼ 1� 1 ¼ 0 (do not
attack), which means that the utility of the attacker in this
case would be always 0 (i.e., 0�P

i2L Qij � li). Intuitively,
this means that the attacker would not gain (nor lose) any-
thing since it didn’t launch any attack. On the other hand, if
the best response of the attacker fj is set to 0 meaning that
the attacker chooses not to attack in response to the hyper-
visor’s observed strategy li, then the deviation from fj would
be 1� fj ¼ 1� 0 ¼ 1, which means that the attacker would
chose to attack. Then, the utility of the attackerwill be always
negative, which represents the fact that the attack is unsuc-
cessful since the attacker will be caught by the hypervisor (as
a result of not playing the best response to the observed
hypervisor’s strategy), along with the cost spent to launch
this attack.

Let’s move now to the cloud system’s side. The hypervi-
sor, knowing that the attacker will play its best response fjðlÞ
to every hypervisor’s strategy l, incorporates this knowledge
into its optimization problem to determine the solution l that
maximizes its own payoff. Thus, the hypervisor has to solve
the following problem:

maximize
X
i2L

X
j2F

Uij � fjðlÞ � li

subject to
X
i2L

li ¼ 1;

li 2 ½0; 1�; 8i 2 L:

(8)

Problem (8) can be completed by incorporating the character-
ization of fjðlÞ depicted in Problem 5 and Eqs. (6) and (7).
Taking into account the fact that given any optimal mixed
strategy fjðlÞ, then all the pure strategies in its support are
also optimal [27], we can consider only the optimal pure
strategies of the attacker (which always exist) and symbolize
the optimal pure strategies using binary variables.Moreover,
to enhance the decisions of the hypervisor, we incorporate
the probability distribution py of facing each type y 2 Y of
attackers into the hypervisor’s optimization problem. For
example, if the hypervisor learns that the majority of attack-
ers targeting the cloud system in a certain period are DoS
attackers, then it would adjust its detection load strategy
towards assigning more load to the VMs that are suspected
to be vulnerable to such attacks. In Section 5.3, we explain
how the hypervisor would be able to practically compute py.
Knowing all this information, the hypervisor’s problem
becomes:

WAHAB ET AL.: RESOURCE-AWARE DETECTION AND DEFENSE SYSTEM AGAINST MULTI-TYPE ATTACKS IN THE CLOUD: REPEATED... 611

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

maximize
l;f

X
y2Y

X
i2L

X
j2F

py � Uy
ij � li � fyj

subject to
X
i2L

li ¼ 1;

X
j2F

fy
j ¼ 1; 8y 2 Y

ð1� fy
j Þ �

X
i2L

Qij � li � 0; 8j 2 F; y 2 Y

fy
j �

X
i2L

Qij � li � 0; 8j 2 F; y 2 Y

li 2 ½0; 1�; 8i 2 L

fy
j 2 f0; 1g; 8j 2 F; y 2 Y:

(9)

In Problem (9), the first and fifth constraints compel a fea-
sible mixed policy for the hypervisor, whereas the second
and sixth constraints compel a feasible pure strategy for the
attacker. The sixth constraint restricts as well the actions’
vector of the attacker to be a pure distribution over F . The
third and fourth constraints force the best response fjðlÞ to
be optimal for the attacker in terms of gained utility. Problem
(9) is an integer programwith a non-convex quadratic objec-
tive [27]. Thus, the final step would be converting theMixed-
Integer Quadratic Programming (MIQP) at hand into a
Mixed-Integer Linear Programming (MILP) by removing the
non-linearity of the objective function. This can be achieved
by assigning the value of li � fy

j to a new variable zyij. Thus,
the problem becomes:

maximize
l;f

X
y2Y

X
i2L

X
j2F

py � Uy
ij � zyij

subject to
X
i2L

X
j2F

zyij ¼ 1; 8y 2 Y

fyj �
X
i2L

zyij � 1; 8j 2 F; y 2 Y

X
j2F

fyj ¼ 1; 8y 2 Y

ð1� fy
j Þ �

X
i2L

Qij � zyij � 0 8j 2 F; y 2 Y

fyj �
X
i2L

Qij � zyij � 0 8j 2 F; y 2 Y

zyij 2 ½0; 1�; 8i 2 L; j 2 F; y 2 Y

fyj 2 f0; 1g; 8j 2 F; y 2 Y:

(10)

Having linearized the problem, the MILP in Problem (10)
can be now solved using a linear programming solver tool
to derive the optimal mixed strategies of the cloud system
and attackers [28]. Note also that the probability distribu-
tions obtained form the Bayesian Stackelberg game are
changed from time to time (according the results of the risk
assessment phase), which adds an extra complication layer
to the attackers and makes it quite difficult for them to
breach the detection strategy of the hypervisor.

5 LEARNING-BASED DETECTION AND DEFENSE

SYSTEM: REPEATED BAYESIAN STACKELBERG

GAME

As depicted in Fig. 1, the repeated Stackelberg game con-
sists of four main phases: Bayesian Stackelberg game, vir-
tual machines’ risk assessment, services deployments and
defense mechanism, and attackers’ types recognition tech-
nique. These phases run repeatedly at each time unit t of
the discrete time window ½t1; t2�. The Bayesian Stackelberg
game (described in Section 4) computes the optimal proba-
bility distributions of the hypervisor’s detection load over
the guest VMs. To evaluate the effectiveness of the detection
strategy, the risk assessment phase enables the hypervisor
to conduct an in-depth study on the vulnerabilities and
threats that might be present on VMs and to analyze their
past attack history to derive the appropriate risk level of
each VM. Having identified the risky VMs, the goal of the
services deployment phase is to advance a defense mecha-
nism that protects services from being successful target for
attackers. This is done by offering a live-migration-based
decision making framework that allows the hypervisor to
migrate services hosted on VMs classified as risky to other
safer VMs. Finally, the honeypots deployment phase
exploits the idle VMs (running no active services) by
deploying honeypots inside them to collect malicious data
with the aim of studying and learning the behavior and
objectives of the attackers. The collected data is analyzed
using a one-class SVM classifier to predict the types of
attackers and learn about their probability distributions.
This information is used finally to feed the Bayesian Stackel-
berg game of the next time moment xþ 1 with the probabil-
ity distributions over the attackers’ types to adjust and
optimize the hypervisor’s detection load distribution strate-
gies. Note that only the first two phases (Bayesian Stackel-
berg game and risk assessment) have to be continuously

Fig. 1. Repeated Bayesian Stackelberg game phases: Bayesian stackelberg game, risk assessment, services deployment, andHoneypots deployment.

612 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

repeated (i.e., every time unit of the discrete time window).
Specifically, the execution of the rest of the phases is depen-
dent on the output of the risk assessment phase. In other
words, if no VMs are suspected to be risky at a certain time
unit, there will be no need to proceed with the other subse-
quent steps at that time moment. In what follows, we
explain each phase of the repeated Stackelberg game in
detail and provide numerical examples.

5.1 Virtual Machines Risk Assessment

Having computed the optimal detection load distribution
strategy using the one-stage Bayesian Stackelberg game
described in Section 4, the hypervisor assesses in this phase
the risk level of each VM. The methodology used for risk
assessment is inspiredmainly by that of the NIST [29], which
provides a comprehensive guide on how to evaluate the
security risk levels of Information Technology (IT) resources.
Specifically, the risk level of a VM v is estimated in terms of
the likelihood of exploiting a specific vulnerability that is pres-
ent on v to exert some attack alongwith the consequent impact
of that malicious act on v. Formally, the risk level assessment
function of VM v at the time moment t 2 ½t1; t2� is calculated
as follows:

RiskvðtÞ ¼ wvðtÞ � yvðtÞ � #vðtÞ; (11)

where wvðtÞ is the worth of v at time moment t, yvðtÞ is the
magnitude of impact resulting from the exploit of the vul-
nerabilities present on v at time moment t, and #vðtÞ is the
threat likelihood on v at time moment t. Thus, the first step
in assessing the risk levels would be estimating the worth of
each virtual machine. The worth is an indicator of the
degree of damage that could be entailed by the exercise of
a certain attack on the VM. Obviously, the worth of a certain
VM is decided on the basis of its current hardware,
storage, and networking capabilities (e.g., memory, CPU,

bandwidth, etc.). Table 5 shows a list of possible worth lev-
els, values, and descriptions that can be used to assess the
worths of the VMs.

The second step in the risk assessment process involves
identifying and listing the VM’s potential vulnerabilities that
attackersmight take advantage of to carry out theirmalicious
attacks. In our case, we use the list of vulnerabilities identi-
fied in Table 1. Table 6 shows a list of possible vulnerability
levels, values, and descriptions that can be used to assess the
impacts of vulnerability exploitations on the VMs.

Having characterized the potential vulnerability exploita-
tion impacts, the third step is to determine the corresponding
threats that exploit the identified vulnerabilities to launch
attacks against VMs. For our risk assessment process, we
restrict the analysis to the list of attacks identified in Table 1.
Table 7 shows a list of some possible threats levels, values,
and descriptions that can be used to assess the threat likeli-
hood on the VMs.

Now that we have defined the worth, vulnerability, and
threat levels, we need to proceed with identifying the risk
levels scale to be used as a reference when deciding about
the VMs’ risk levels. The risk levels scales and descriptions
are presented in Table 8.

We are nowwell-equipped to move forward with the risk
levels determination step, where the risk level of each VM is
computed using Eq. (11) after normalization. We give in
Table 9 a numerical example that clarifies how to compute
and determine the risk levels of three VMs based on the
worth, vulnerability, threat, and risk scales defined in
Tables 5, 6, 7, and 8 respectively.

In Table 9, v1 has to be classified as being low-risk
(according to Table 8), v2 as moderately risky, and v3 as
highly risky. Note that we multiply by 6 and divide by 216
(i.e., 6� 6� 6) in Table 9 to normalize the computed risk
level values [29].

Nonetheless, our risk assessment process is not yet com-
plete. In fact, despite its importance and effectiveness, the

TABLE 5
Virtual Machine Worth Scale and Description

Worth Level Value Description

Important 6 The VM has sophisticated hardware, networking,
and storage capabilities.

Medium 3 The VM has intermediate hardware, networking,
and storage capabilities.

Moderate 1 The VM has simple hardware, networking,
and storage capabilities.

TABLE 6
Vulnerability Scale and Description

Vulnerability Level Value Description

High 6 The exploit of the vulnerability results in
extremely painful losses for the VM and
cloud system as a whole. Such
vulnerabilities can include vCPUs, VM
management, SMP, paravirtualized I/O and
remote management software.

Medium 3 The exploit of the vulnerability results in
painful losses for the VM and cloud system.
Such vulnerabilities can include soft MMU.

Low 1 The exploit of the vulnerability results in
manageable losses for the VM. Such
vulnerabilities can include hypercalls.

TABLE 7
Threat Scale and Description

Threat Level Value Description

High 6 The threat is extremely strong and performed by an
expert attacker. Such threats can include DoS, and
privilege escalation.

Medium 3 The threat is strong and performed by a motivated
attacker. Such threats can include co-hosted VMs’
memory modification and VM destruction.

Low 1 The threat is weak and performed by a non-
professional attacker. Such threats can include
virtual machines crash.

TABLE 8
Risk Scale and Description

Risk Level Risk Scale Description

High 5-6 There is an urgent need to implement corrective
measures (e.g., live migration) to resume the normal
operation of the cloud system.

Medium 3-4 There is a need to implement corrective measures
within a reasonable period of time to resume the
normal operation of the cloud system.

Low 1-2 The risk does not constitute an obstacle to the
normal operation of the cloud system.

WAHAB ET AL.: RESOURCE-AWARE DETECTION AND DEFENSE SYSTEM AGAINST MULTI-TYPE ATTACKS IN THE CLOUD: REPEATED... 613

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

above presented risk assessment is generic for all VMs and
does not take into account the past history of each VM. Prac-
tically, to make the risk analysis more realistic and thorough,
we have to consider the past attack history of the VMs in our
analysis. Therefore, we propose to integrate the attack
growth/decay (growth in case the number of attacks is
increasing and decay otherwise) factor et:kvðtÞ of each VM v at
time moment t into our risk level determination formula.
Thus, the risk assessment formula presented initially in
Eq. (11) becomes:

RiskvðtÞ ¼ wvðtÞ � yvðtÞ � #vðtÞ � e½ðt�1Þ�ðt�2Þ�:kvðtÞ;
(12)

kvðtÞ ¼
lnðNvðt�2Þ

Nvðt�1ÞÞ
½ðt� 2Þ � ðt� 1Þ� ; (13)

where kvðtÞ is the attack growth/decay rate on v and NvðtÞ is
the number of times v has been attacked at timemoment t. As
depicted in Eq. (13), the attack growth/decay rate kvðtÞ is
computed based on the difference between the number of
attacks that existed at the two past consecutive timemoments
t� 1 and t� 2. Assume that the risk calculations presented in
Table 9 were derived at time moment t ¼ 3 and that v1 got
attacked three times at time moment t ¼ 1 and five times at
time moment t ¼ 2. We explain in the following how Eq. (13)
has been derived and how to practically compute the attack
growth factor kv1ðtÞ of v1 at time moment t ¼ 3. Specifically,
we have: 5 ¼ 3� eð2�1Þ:kv1 ð3Þ) 5=3 ¼ ekv1 ð3Þ) lnð5=3Þ ¼ ln
ðekv1 ð3ÞÞ) lnð5=3Þ ¼ kv1ð3Þ) kv1ð3Þ ¼ lnð5=3Þ ¼ 0:511. Thus, the
risk level of v1 would be updated to become Rv1ð3Þ ¼
0:17� e0:511�1 ¼ 0:283, where v1 remains a low-risk VM.

5.2 MTD-Based Defense Mechanism

In the light of the results obtained from the risk assessment
phase, we discuss in this section an MTD-based services’
deployment strategywhose goal is to provide a defensemech-
anism to protect the services hosted in the cloud system from
being successful targets for attackers. Practically, we propose
a security-oriented live migration strategy [30] that allows the
hypervisor to migrate the services running inside VMs classi-
fied as risky to be hosted in other more secure VMs. To do so,
the hypervisor has to identify first the set of VMs that might
serve as replacements for the risky ones. Apart from security
considerations, determining such a set of VMs involves some
technical constraints, where the migration process should
maintain some technical compatibilities between the migra-
tion source and destination VMs. For example, the Operating
systems (OSs) of the source and destination VMs have to be
consistent since migration between distinct OSs (e.g., Win-
dows and Linux) might entail some technical complications
and unanticipated technological roadblocks. Moving to the
security perspective, the set of VMs that are eligible to serve

as replacements should evidently be selected to be non-risky
based on the risk assessment’s results.

Formally, let EvðtÞ denote the set of VMs that are eligible
to replace a VM v at time moment t. These VMs satisfy thus
the aforementioned technical constraints and are classified
as low-risk in the risk assessment phase. Also, let pv�!v0 ðtÞ
denote the percentage of worth increase between v and v0 at
time moment t, which is calculated as per

pv�!v0 ðtÞ ¼
w0
vðtÞ�wvðtÞ
wvðtÞ ; if wvðtÞ�wvðtÞ

wvðtÞ � 0

þ1; otherwise

(
: (14)

Let v	 be the VM that gives theminimumworth increase per-
centage w.r.t v, i.e., pv�!v	 ðtÞ ¼ minðpv�!vmðtÞÞ; 8vm 2 EvðtÞ.
The decision of the hypervisor to migrate a service running
inside v to another VM v0 2 EvðtÞ is taken as follows:

� if EvðtÞ 6¼ ; and pv�!v	 ðtÞ 6¼ þ1, the hypervisor
selects the VM v	 that gives the least percentage
increase in the worth value pv�!v	ðtÞ compared to v.

� if EvðtÞ ¼ ; or pv�!v	ðtÞ ¼ þ1, then the hypervisor
creates a new VM v00 to be the migration destination
for the services running in v.

The idea behind selecting the VM giving the least worth
increase percentage to serve as a replacement is to guarantee
that the migrated service will be running in a new environ-
ment that is very similar to that it was running inside (before
migration) in terms of VM’s actual storage, CPU, and mem-
ory states. This is because theworth is an indicator of the cur-
rent hardware, storage, and networking capabilities of the
VM. Such a migration decision would help maintain the per-
formance of the service after the migration process. Along
with the same line, we exclude the VMs that give a negative
worth percentage increase (by assigning themþ1 in Eq. (14)
so that they will never be selected as minimum) because we
do not want the migrated service to run in an environment
that does not satisfy its actual performance needs. On the
other hand, if no VMs satisfying the technical and security
constraints of the migration source vi are available (i.e.,
EviðtÞ ¼ ;) or no VMs having non-negative worth increase
percentage compared to vi exist (i.e., pvi�!v	

j
ðtÞ ¼ þ1), then

the hypervisor creates a new VM and migrates the services
running inside the risky VM to it.

Note that it would be predictable for attackers to guess
that the services running in a certain VMwould be migrated
to another VM having similar hardware configuration as
designed in Eq. (14). However, this is true only if the attack-
ers are made aware that a migration decision is to be taken.
Therefore, the idea of the proposed MTD technique is to
make attackers unaware that the services running inside
(risky) VMs are beingmigrated. This is achieved through the
honeypot deployment technique discussed in the next sub-
section which keeps a copy of the migrated services running
in the honeypot VMs, while using fake worthless data to
populate these services. This would give attackers the
impression that honeypot VMs are still running real services
and that nomigration is being carried out.

5.3 Honeypot Deployment and Machine Learning

In order to learn the probability distributions over the
attackers’ types and inspect their objectives, the hypervisor

TABLE 9
Risk Levels Determination Example

VM Worth Vulnerability Impact Threat Likelihood Risk

v1 6 1 1 6�1�1
216 � 6 ¼ 0:17

v2 6 3 6 6�3�6
216 � 6 ¼ 3

v3 6 6 6 6�6�6
216 � 6 ¼ 6

614 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

can exploit the idleVMs by deploying honeypots inside them
to serve as traps for attackers. A honeypot in our case is a
deception VM that is configured by the hypervisor to serve
as a purposed target for attacks. The objective is to give
attackers the impression that they are interacting with a real
system and hence encourage them to freely launch their
attacks in order to gather massive and valuable information.
In this way, any connection with the honeypot would be
deemed to be an attack and all the traffic circulating to the
honeypot is roughly entirely unauthorized. Honeypot sys-
tems can be either of low-interaction or high-interaction [3].
Low-interaction honeypots (e.g., Honeyd) function by emu-
lating services designed to catch some specific malicious
activities (e.g., FTP login), which makes them limited to a
confined level of interaction with attackers. The main advan-
tages of low-interaction honeypots lie in their simplicity to
deploy and maintain and in the minimal risk that they entail
to the system. Practically, low-interaction honeypots do not
allow attackers to have access to the OS, which protects the
cloud system and co-hosted VMs from potential attacks.
Nonetheless, themain disadvantages of low-interaction hon-
eypots are the limited amount of information that they can
capture and their simple configuration that increases the
capability of skillful attackers to detect their presence.

On the other hand, high-interaction honeypots (e.g., Hon-
eynets) consist of real applications and OSs that are designed
for advanced research purposes. Simply speaking, high-
interaction honeypots involve providing a real execution
environment (e.g., a real Windows honeypot system running
a real FTP server) in which nothing is being emulated. The
main advantage of such honeypots is the ability to gather
large amounts of information that enable analyzing and
understanding the complete extent of the attackers’ malicious
behavior. Moreover, the fact that high-interaction honeypots
rely on real systems makes them appealing to attackers and
hard to be recognized as being traps. However, the main self-
evident disadvantage of such a type of honeypots lies in the
risks that they might impose on the real system. Therefore, a
thoughtful implementation and configuration of high-inter-
action honeypots is required to block attackers from exploit-
ing these honeypots to hurt other non-honeypot systems.
Such a thoughtful implementation might include, for exam-
ple, isolating the CPU assigned to honeypots from that
assigned to non-honeypot VMs to prevent scheduling tasks
coming from honeypots on the same physical CPU as other
non-honeypot VMs.

Because the aim of our honeypots deployment process is
to study the behavior of the attackers to be able to determine
the probability distributions over their types, we choose to
employ high-interaction honeypots for our problem. The
fact that high-level interaction honeypots make no prede-
fined assumptions on how attackers shall misbehave makes
them able to capture all types of malicious activities includ-
ing unexpected misbehavior. Thus, they are suitable to
study and analyze different types of attacks including
unknown ones. Furthermore, in order to make honeypots
even more appealing for attackers, our honeypot deploy-
ment approach consists of keeping a copy of the (migrated)
services running inside honeypot VMs, while using fake
data to populate them. For example, a banking system that
migrates to another safer VM will keep running inside the

honeypot VM, while using dummy accounts numbers, cli-
ents’ names, etc. Along with the same line, the services run-
ning inside honeypot VMs are changed and updated on a
regular basis to minimize the chances of being discovered
by attackers as traps.

Having collected the necessary data from honeypots, we
need a classification technique to analyze this data and learn
the probability distributions over the attackers’ types. To this
end, we choose to employ the one-class Support Vector
Machine (SVM) [4] which has been proposed as an extension
of the traditional SVM binary classifier. One-class SVMs try
to find the decision boundary (i.e., hyperplane) which sepa-
rates the majority of the data points from the origin. In this
way, the data points that lie on the other side of the decision
boundary will be deemed to be outliers or abnormal activity.
This enables the decision function to classify any new data as
being analogous or different from a certain pattern of data
fed in the training phase (i.e., novelty detection). The selec-
tion of one-class SVM to be used in our problem stems from
three main observations. First, one-class SVM is an unsuper-
vised classification technique which requires no extensive
prior information nor predefined class labels for the ana-
lyzed data. Second, one-class SVM supports multi-class data
classification, which makes it appropriate for our problem in
which we deal with attackers of multiple types. Third, the
fact that one-class SVM is dedicated to novelty detection
makes it well-suited to identify new types of (yet) undetected
attacks. This might be achieved by considering each type of
already identified attacks as a normal activity and determin-
ing the degree of similarity/dissimilarity of each set of new
data w.r.t that normal activity data. Suppose, for example,
that the classification system has already identified DoS and
privilege escalation attacks. If new features that do notmatch
neither DoS nor privileges escalation attacks’ features are
found on the honeypot system, then this would be consid-
ered as a new attack type targeting the cloud system.

Formally, let x ¼ ðx1; x2; . . . ; xnÞ denote the feature vector
which contains all the attack features (e.g., source and desti-
nation IP addresses, host names, protocol used, geographi-
cal information of the attack sources, etc.) collected by the
honeypot system. The one-class SVM classification problem
is mapped into solving the following objective function’s
minimization problem:

min
v;�i;r

1

2
kwk2 þ 1

yn

Xn
i¼1

�n � r

subject to:
ðw:fðxiÞÞ � r� �i 8i ¼ 1; . . .; n
�i � 0 8i ¼ 1; . . .; n

8>>>><
>>>>:

; (15)

where n is the size of the training set,w represents the normal
vector to the hyperplane, and r is the bias term. Moreover,
fð:Þ denotes a transformation function concretized by the ker-
nel function to project the data into a higher dimensional
space and �i 2 �n are slack variables used to allow some data
points to lie within the margin so as to prevent the SVM clas-
sifier from over-fittingwith noisy data. Yetmore importantly,
y is the regularisation parameter that determines the shape of
the solution by specifying (1) an upper bound on the fraction
of outliers; and (2) a lower bound on the number of training
tuples employed as support vectors. Thus, an increased value

WAHAB ET AL.: RESOURCE-AWARE DETECTION AND DEFENSE SYSTEM AGAINST MULTI-TYPE ATTACKS IN THE CLOUD: REPEATED... 615

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

of ywidens the softmargin and augments the probability that
the training data will fall outside the normal borders. Prob-
lem (15) can be solved using the Lagrangemultipliersmethod
so that the decision function fðxÞ becomes:

fðxÞ ¼ sgnððw:fðxiÞÞ � rÞ ¼ sgn

�XN
i¼1

aikðx; xiÞ � r

�
;

(16)

where kðx; xiÞ is the kernel function, which might be either
linear, polynomial, gaussian, or sigmoid, i.e.,

Kðxj; xiÞ ¼
xi:xj; linear

ðg:xi:xj þ cÞd; polynomial

expð�g: jxi � xj j 2Þ; gaussian radial basis
tanhðg:xi:xj þ cÞ; sigmoid

8>><
>>: :

(17)

Based on the results obtained from the classification pro-
cess, the hypervisor computes the probability py for each
attacker’s type y 2 Y using

py ¼ Number of observations classified as ‘‘y’’

Total number of observations
: (18)

Finally, this information is used back to feed the Bayesian
Stackelberg game (Section 4) with the attackers’ types prob-
ability distributions to help it continuously adjust and opti-
mize the detection load probability distributions over the
set of guest VMs.

6 EXPERIMENTAL RESULTS AND ANALYSIS

We explain in this section the environment employed to per-
form our experiments and present and analyze the experi-
mental results.

6.1 Experimental Setup

To carry out the experiments, we build our own cloud data-
center using CloudSim [31], a cloud simulator that provides
realistic cloud features such as co-hosted VMs, network con-
nections among cloud components, and services migration
support. The decision to create our own cloud rather than
using rented resources from existing providers stems from
two observations [1]. In the first place, most of the cloud pro-
viders (e.g., Amazon EC2) have strict restrictions concerning
any security testing on their resources and infrastructure. In
the second place, cloud providers forbid any direct access of
the users to the VMs’ host system; thus making the acquisi-
tion of performance data and the implementation of new
algorithms at the host’s level far difficult to achieve. The
characteristics of the created cloud are populated from the
Amazon EC2 X-large instances [5] in terms of VMs configu-
rations and pricing scheme. Specifically, the cloud datacenter
is equippedwith 100 physicalmachines; each hosting a num-
ber of VMs varying from 10 to 50. The image size of the VMs
is of 10000 MB, the memory RAM capacity is of 16 GB, and
the hard drive storage is of 976.5625GB. EachVM is supplied
with a 5-core CPU of 1000Millions of Instructions Per Second
(MIPS) each. The network bandwidth share of each VM is
50000 Kbit/s. Moreover, Linux has been adopted as an OS in
the datacenter, x86 as a system architecture, and Xen as a Vir-
tualMachineMonitor (VMM). The prices of the VMs, used to

compute the utility functions, have been selected according
to Amazon EC2 pricing scheme.2

To analyze the performance of the attackers’ types recog-
nition phase, we use a dataset [6] from the Data Driven Secu-
rity (DDS) datasets collection. The dataset is collected from
AWS honeypots deployed on several instances across the
world for a period covering March to September 2013 [32].
The dataset records attack data including source and desti-
nation IP addresses, host names, protocol used (e.g., TCP),
source and destination ports, and geographical information
of the attack sources (i.e., country, postal code, longitude,
and latitude). To create the training and test sets, we use the
k-fold cross-validation technique (with k ¼ 10) whereby the
dataset is split into k subsets, each used every time as test set
and the remaining k� 1 subsets are combined together to
form the training set. The principal advantage of the k-fold
cross-validation lies in its ability to diminish the bias of the
classification results on theway based onwhich data is being
divided since each data tuple will be part of the test set
exactly once and part of the training set k� 1 times.

Finally, to populate the probability distributions over the
attackers’ types (used to achieve the Bayesian property of the
game), we capitalize on the findings presented in [21], which
surveys the attacks/vulnerabilities distributions on Xen
hypervisors (used in our simulations) based on real data col-
lected fromNVD [22], SecurityFocus [23], Red Hat’s Bugzilla
[24] and CVEs [25]. These probability distributions are sum-
marized in Table 10. Note that all the experiments have been
conducted in a 64-bit Windows 7 environment on a machine
equippedwith an Intel Core i7-4790 CPU 3.60 GHz Processor
and 16 GB RAM.

To show the improvements brought by our solution com-
pared to the state-of-the-art, we compare our work experi-
mentally with five other detection and defense strategies,
namely Collabra [12], probabilistic migration [2], one-stage
Stackelberg [18], maxmin [1], and fair allocation [33]. The
core idea of Collabra [12] is to analyze every hyper-call initi-
ated by each guest application to recognize distributed
attacks that aim to compromise the host hypervisor. In the
fair allocation model, the detection load is distributed in an
equal manner among VMs so as to guarantee the fairness of
the detection process. On the other hand, the maxmin-based
detection load distribution strategy leverages a maxmin
game whose utility functions are mainly fed by the trust
scores computed by the hypervisor toward its guest VMs.
Although the maxmin-based strategy accounts for the
attackers’ strategies and resources constraints in the design
of the problem (as is the case in our solution); it does not

TABLE 10
Attacks Occurrence Distributions on Xen Hypervisors

Attack Occurrence on
Xen Hypervisors (%)

Attack
Detection (%)

Co-hosted VMs’ Memory Modification 8:5% 92:4468%
Denial of Service 45:8% 91:5871%
Virtual Machine Destruction 13:6% 88:0113%
Virtual Machine Crash 5:1% 86:6557%
Privileges Escalation 27% 89:6290%

2. http://aws.amazon.com/ec2/pricing/

616 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

http://aws.amazon.com/ec2/pricing/

account however for the fact that attackers have the ability to
monitor the cloud system’s strategies and adjust their own
strategies. Similar to our solution, the one-stage Stackelberg
accounts for this challenge by computing the best responses
of the attackers to the hypervisor’s detection load distribu-
tion strategies and incorporating this knowledge into the
hypervisor’s optimization problem. Different from our solu-
tion, the one-stage Stackelberg model abstracts on the types
of attackers and is not able hence to provide the hypervisor
with real-time learning about the actual types and objectives
of the attackers. Our work overcomes this limitation by col-
lecting and analyzing malicious data to learn the probability
distributions over the types of attackers targeting the cloud
system and incorporating this knowledge into the hyper-
visor’s optimization problem to optimize its decisions.More-
over, our solution offers a proactive defense mechanism that
protects services from being successful targets for attackers
and works in a repeated fashion to provide incremental and
continuous learning for the cloud system. Finally, the proba-
bilistic migration defense strategy [2] relies on the idea of
migrating VMs at a certain moment of time based on the
probability according to which those VMs are expected to be
compromised by attackers during the next time moment,
where such a probability is mainly dependent on the attacks’
growth success probability over time.

6.2 Experimental Results

In the first set of experiments (Fig. 2), we test different combi-
nations of the proposed repeated Bayesian Stackelberg game
experimentally to verify the importance of each phase when
used alone and when combined with the other phases. In
Fig. 2a, we measure the attack detection performance while
comparing the cases where (1) all the phases are integrated
into the solution, (2) the risk assessment phase is removed
from the solution, and (3) the MTD defense and honeypot
andmachine learning phases are removed from the solution.
By looking at Fig. 2a, we can observe that removing the risk
assessment component results in a considerable degradation
in the detection performance by 20 percent. This decrease
can be justified by the fact that without the risk assessment
strategy, the migration of the services according to the MTD
mechanism would be done in an arbitrary fashion lack of
any knowledge of the risk levels of the VMs. This, in turn,
leads to mostly uninformative data collected by the honey-
pots and analyzed by the machine learning technique. Con-
sequently, the quality of the decisions generated by the
Bayesian Stackelberg game fed by such data would be
decreased. On the other hand, removing the MTD and

honeypot phases from the solution results in a less significant
decrease in the detection performance (compared to remov-
ing the risk assessment phase) as shown in Fig. 2a. The rea-
son is that by removing the MTD and honeypot phases, no
data can be collected and analyzed at all (which is better than
having misleading data). Thus, the performance of the solu-
tion without these two phases converges to that of a one-shot
Stackelberg game which includes no learning component
with regards to the attackers types distributions. Overall, we
can conclude that the risk assessment phase is the most
important phase to optimize the detection performance. On
the other hand, the MTD and honeypot phases have the less
impact on the detection performance.

In Fig. 2b, we assess the performance in terms of percent-
age of survived services, while considering the cases where
(1) all the phases are integrated into the solution, (2) the risk
assessment phase is removed from the solution, (3) the
MTD defense phase is removed from the solution, and (4)
the honeypot and machine learning phase is removed from
the solution. For this experiment, we were able to separate
the MTD phase from the honeypot and machine learning
phase since the MTD-based migration strategy would influ-
ence the percentage of survived services even when used
separately from the honeypot and machine learning phase,
as opposed to the case of attack detection (Fig. 2a) in which
when no migration occurs then no data at all can be ana-
lyzed by the machine learning technique. By examining
Fig. 2b, we notice that removing the MTD phase (case 3)
leads to the poorest performance compared to the other
cases. This result is expected since removing the MTD phase
leads to taking out the proactive (migration) step from the
solution and giving attackers the chance to launch their
attacks. On the other hand, keeping the MTD phase (along
with the risk assessment phase) and removing the honeypot
and machine learning phase (case 4) results in a less painful
decrease in the percentage of survived services, where the
performance of this combination converges to the perfor-
mance of a one-shot Stackelberg game. Finally, removing
the risk assessment phase and keeping the MTD and honey-
pot phases (case 2) would lead to arbitrary migration deci-
sions and hence decrease in the effectiveness of the MTD
technique. Thus, we can conclude that the MTD phase is the
most important phase to increase the percentage of survived
services. On the other hand, the honeypot and machine
learning phase has the least significant impact on this met-
ric. Overall, we can conclude that the honeypot and
machine learning phase, whose removal has the least
impact on both the detection performance and number of

Fig. 2. The objective of this Fig. is to asses the impact of each phase of the repeated Bayesian Stackelberg game on the overall solution’s
performance.

WAHAB ET AL.: RESOURCE-AWARE DETECTION AND DEFENSE SYSTEM AGAINST MULTI-TYPE ATTACKS IN THE CLOUD: REPEATED... 617

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

survived services, is rather an optimization phase (that can
be helpful to obtain better decisions) than a mandatory
phase.

Next, we investigate in Fig. 3 the detection performance
metrics (attack detection, false negative, and false positive
percentages) of the four studied solutions. Attack detection
represents the percentage of attacks that the IDS was able to
identify as such. Different from the literature’s definition of
false negative (i.e., the case where the IDS classifies some
activity as benignant when the activity is an actual attack),
we consider in our case that the false negative situation
occurs when there exists an actual attack targeting the VM
but there is no monitoring effort put on that VM to protect it.
Different from the literature’s usual definition of false posi-
tive (i.e., the case where an alarm is raised when there is no
actual attack on a particular resource), we consider in our
case that the false positive situation occurs when there is
some monitoring effort put on a certain VMwhile this VM is
not being attacked. This metric is of special importance since
it gives a hint on the amount of security resources wasted
during the detection process. By examining Fig. 3, we can
notice that the performance of all the studied solutions begins
to decrease with the increase in the number of co-hosted
VMs. The reason is that increasing the number of VMs on a
single physical machine increases the attack space for attack-
ers by giving them an increased number of VMs to distribute
their attacks over. Moreover, the increase in the number of
co-hosted VMs would lead to reduce the effectiveness of the
security budget since the same budget would need to be dis-
tributed across a larger number of VMs. Thus, the share of
security resources for each single VM is naturally reduced as
the number of VMs grows up. However, we can notice from
Fig. 3 that our solution and Collabra remain far more resilient
to an increased number of co-hosted VMs than the other solu-
tions. The second observation that can be made from Fig. 3 is
that our repeated Bayesian Stackelberg, Collabra, maxmin,
and one-stage Stackelberg models achieve better detection
performance (in terms of attack detection, false negative, and
false positive) compared to the fair allocation strategy. The
reason is that the repeated Bayesian Stackelberg, one-stage
Stackelberg, andmaxminmodels consider the attackers’ strat-
egies in the formulation of the game, which enables them to
compute the optimal detection load distributions that best
synchronize with the attackers’ strategies. On the other hand,
the fair allocation model seeks to achieve the fairness in the
detection process by distributing the detection load in an
equal manner among VMs; thus overlooking how attackers’
are distributing their attacks. For example, a fair allocation

model which distributes the detection load amongst three
VMs v1, v2, and v3 so that each one receives 33.33 percent
might end up assigning a big part of the security resources
(i.e., 33 percent) monitoring a VM that will not be selected by
attackers to contribute in the attacks. Moreover, the Stackel-
berg-based solutions (i.e., our solution and the one-stage
Stackelberg) outperform the maxmin-based solution since the
formermodels account for the fact that attackers have the abil-
ity to monitor the hypervisor’s detection load distribution
strategies and they integrate this knowledge into the hyper-
visor’s optimization problem to optimize its detection strate-
gies. Our repeated Bayesian Stackelberg solution, in its turn,
performs better than the one-stage Stackelberg because it
includes a learning component that learns the types and objec-
tives of the attackers and incorporates this knowledge into the
hypervisor’s optimization problem. This increases the aware-
ness of the hypervisor about the nature and gravity of the
attacks that are expected to be launched on every VM and
aids it hence to adjust the detection load distributions accord-
ingly. Finally, our repeated Bayesian Stackelberg game and
Collabra achieve very close detection performance results in
terms of attack detection and false negative percentages since
Collabra monitors every activity of the VMs, which allows it
to achieve high detection performance that is similar to that of
our solution. However, unlike our solution in which the false
positive percentage is negligible, Collabra entails high percen-
tages of false positives up to 45 percent (Figs. 3c and 4c), thus
causing a significant wastage of resources. The reason is that
Collabra monitors all of the VMs’ activities whether or not
these VMs are launching attacks, which leads to large and
unnecessary squandering of resources since usually most of
the times the VMs are not supposed to launch attacks. It is
worth mentioning that we characterize the attack detection
metric in a more detailed way in Table 10 by showing the
detection rate specific to each of the six considered attacks,
where the results depicted in Fig. 3a represent the average
detection over all attack types.

In Fig. 4, we study the scalability of our solution with
respect to the variation in the percentage of co-resident mali-
cious VMs. To do so, we vary the percentage of attacking VMs
co-residing on a single cloud system from 10 percent up to
80 percent to explore the effects of this variation on the perfor-
mance of the studied solutions. As shown in Fig. 4, the perfor-
mance of all the solutions begins to decrease with the increase
in the percentage of attacking VMs. This unsurprising result
is due to the fact that the bigger the number of VMs attacking
the system is, the less is the ability of the cloud system to cap-
ture attacks under the limited budget of security resources.

Fig. 3. Our solution improves the detection performance and is scalable to the increase in the number of co-hosted VMs compared to the one-stage
Stackelberg, maxmin, and fair allocation strategies.

618 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

Thus, a possible choice for the cloud system’s administrators
would be to increase the security budget to face an increased
number of attacks. Specifically, our attackers’ types recogni-
tion phase can aid the cloud’s administrators in deciding
whether there is a need to increase the security resources bud-
get or not by giving them detailed information about the vol-
ume and nature of attacks targeting the cloud system.
Fortunately, our solution (alongwith Collabra) shows a better
scalability to an increased percentage of attacking VMs
compared to the other models even in extreme cases (i.e.,
80 percent of co-resident malicious VMs) thanks to the previ-
ously discussed advantages brought by our solution.

In Fig. 5, we study the effectiveness and efficiency of our
MTD-based defense mechanism and machine learning tech-
nique by measuring the percentage of survived services, and
the training and classification times. In Fig. 5a, we measure
the percentage of survived services which represents the per-
centage of services that remained unattacked during their
whole lifetime. In this Fig., the probabilistic migration [2]
(described in Section 6.1) is added to the comparisons. We
notice from Fig. 5a that our solution is able to increase the
number of survived services compared to the other solutions.
This is thanks to the proactive defense mechanism that our
solution advances and that migrates the services running
inside risky VMs to other more secure VMs to protect them
from being successful targets for attacks. The absence of such
amechanism in the Collabra, one-stage Stackelberg, maxmin,
and fair allocation solutions limits their effectiveness to some
reactive measures (i.e., detection) and hence leads to an
increased number of attacked services. Besides, our work
outperforms the probabilistic migration defense strategy [2]
since we provide a comprehensive risk assessment frame-
work which takes into consideration not only the attack
growth success probability (considered in [2]), but also the
potential vulnerabilities of the VMs, their expected threats, as
well as their past attack history when deciding on whether to

migrate services or not. Fig. 5b shows the time required to
train the one-class SVM on various training datasets sizes. To
do so, we employ the DDS honeypot data collected from
AWSs and whose original size amounts to 650,000 rows. To
study the impact of the training dataset’s size on the training
time, we vary the size of the data from 10,000 to 650,000.
Unsurprisingly, Fig. 5b reveals that the training time
increases with the increase in the size of the training dataset
and reaches at the extreme case (i.e., 650,000 rows) 330s. The
main time complexity lies in the process of constructing an
SVM model for each class label. Practically, since we have 6
types of attackers (Table 1) serving as class labels for the train-
ing dataset, we have to build one SVMmodel for each single
class and train it to differentiate the samples of that class
from the samples of all remaining classes (i.e., novelty detec-
tion). We argue that the obtained time is insignificant, espe-
cially since this phase is executed offline and not required to
be repeated at each time moment as discussed in Section 5.
Having completed the training process, the next step is to
execute the actual classification part,which consists of assign-
ing an attack type for each particular sample. Since the classi-
fication time is also dependent on the dataset’s size as is the
case for the training time, we test the classification’s time on
different dataset sizes. It can be noticed from Fig. 5c that the
classification time is negligible in all the considered cases,
where it does take 0:4s to classify samples in a dataset consist-
ing of 650,000 rows.

Finally, we study in Fig. 6 the execution time, CPU utili-
zation, and memory utilization of the considered solutions.
By examining Fig. 6a, we notice that the fair allocation
approach yields the fastest performance. This is because the
detection load is to be distributed equally across VMs,
which removes the time complexity of finding the optimal
detection load probability distributions. On the other hand,
Collabra gives the (largely) slowest performance and the
poorest scalability to the increase in the number of VMs

Fig. 4. Our solution improves the detection performance and is scalable to the increase in the percentage of co-resident malicious VMs compared to the
one-stage Stackelberg,maxmin, and fair allocation strategies.

Fig. 5. Our solution maximizes the percentage of survived services and entails acceptable training and classification times.

WAHAB ET AL.: RESOURCE-AWARE DETECTION AND DEFENSE SYSTEM AGAINST MULTI-TYPE ATTACKS IN THE CLOUD: REPEATED... 619

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

owing to the fact that it requires analyzing all of the VMs’
activities. The one-Stackelberg performs faster than the max-
min-based and our repeated Bayesian Stackelberg game. The
time difference between the one-stage Stackelberg and max-
min models may be thought of as the time needed by the lat-
ter to gather objective and subjective sources of trust and
compute the final trust values prior to executing the maxmin
game. On the other hand, the time difference between our
repeated Stackelberg model and the one-stage Stackelberg
andmaxmin-basedmodels lies in the time taken by our solu-
tion to perform the VMs’ risk assessment as well as the
computational time entailed by the integration of the
attackers’ type into the optimization problem. Though, our
solution still performs in an efficient manner, where it takes

 5:6s to run in a cloud system consisting of 50 co-hosted
VMs.We can also notice that the time complexity of our solu-
tion grows polynomially with the increase in the number of
VMs, which boosts its scalability in large-scale datacenters.
We compare in Figs. 6b and 6c the resource consumption
entailed by the different considered solutions. We can notice
from Figs. 6b and 6c that the fair allocationmodel records the
least CPU and memory utilization since it involves no heavy
computation and storage duties. Moreover, our solution, the
one-stage Stackelberg, andmaxminmodels can considerably
decrease the CPU consumption by
 15% (Fig. 6b) andmem-
ory consumption by
 25% (Fig. 6c) compared to Collabra.
The reason is that in Collabra, the hypervisor has to check
every incoming call, store it in the memory, and analyze it in
order to detect intrusions, which entails high computational
and storage overhead. In contrary, in the other three solu-
tions, the detection is done in a selective manner so that the
hypervisor doesn’t have to monitor all the activities of the
VMs. Another important remark to be drawn from Figs. 6b
and 6c is that our solution, the one-stage Stackelberg, max-
min, and fair allocation are quite more scalable than Collabra
to the increase in the number of co-hosted VMs. The reason
is that in Collabra, as the number of VMs grows up, the num-
ber of calls to be stored and analyzed by the hypervisor
becomes quite greater, which would entail considerable
overhead in large-scale cloud systems.

7 DISCUSSION

In this Section, we provide an in-depth discussion on the
originality of our solution compared to the state-of-the-art
and shed light on the technical challenges of the different
steps of our approach. Starting with the game model, it is
true that Bayesian Stackelberg games have already been

used in the literature to solve security-oriented problems.
For example, a Bayesian Stackelberg game has been pro-
posed in [34] to protect Los Angeles airport against multi-
type attacks (e.g., thieves, terrorists). In [15], a Bayesian
Stackelberg game has been designed to helpWeb application
administrators chose thoughtful defense strategies to deal
with attackers of different types. However, the main limita-
tions of these approaches is that they assume that the
attacker types’ probability distributions are known a priori,
which is not realistic in practice. In this work, we propose a
practical and effective data-driven optimization methodol-
ogy which employs techniques from several disciplines (i.e.,
risk assessment, MTD, and machine learning) to learn these
probabilities and then integrate them into the Bayesian
Stackelberg game. Such a data-driven learning methodology
provides an effective means for determining the distribution
of the attacker types that target a certain cloud system.More-
over, this approach is novel in this field and opens the door
for further data-driven optimization solutions in the domain
of cybersecurity. Besides, the design of the utility functions
in our case is a serious challenge. In fact, the utility functions
should be designed while taking into account several factors
such as the values of VMs being targeted/protected, type
and impact of attacks being launched, effectiveness of moni-
toring/attack processes, and attack/monitoring costs.

Moving to the MTD technique, it is true that many MTD-
based approaches have been proposed to protect assets from
being successful targets for attackers. However, adopting it in
a cloud environment involvesmany technical challenges. Spe-
cifically, unlike the case of physical security systems where
moving checkpoints and patrols across many locations only
involves security concerns (i.e., making sure that the new
location is safe), migrating services from one VM to another
should maintain some technical compatibilities between the
migration source and destination. For example, the Operating
Systems (OSs) of the source and destination VMs have to be
consistent since migration between distinct OSs (e.g., Win-
dows and Linux) might entail some technical complications
and unanticipated technological roadblocks. To tackle this
challenge, we devise in this work a migration strategy which
takes into account both the security and technical aspects in
the migration process through intelligently choosing the
migration destinations to be the ones that maximize the secu-
rity and minimize differences in terms of hardware, network,
and storage characteristics w.r.t the migration source.

Concerning honeypots, apart from the traditional hon-
eypot deployment techniques, deploying honeypots in
the cloud entails many advantages and challenges. On the

Fig. 6. Our solution is efficient in terms of execution time, CPU utilization, and memory utilization compared to Collabra, one-stage Stackelberg,
maxmin, and fair allocation strategies

620 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

one hand, the cloud computing architecture facilitates the
deployment of honeypots through offering businesses com-
plete isolation from their production network. Moreover, the
use of the cloud eliminates the need for purchasing specific
hardware or dedicated Internet connections. That is, once a
honeypot machine has been compromised and the data is
gathered, a snaposhot might be employed to revert the sys-
tem back to its captured state prior to the happening of the
attack. On the other hand, the use of honeypots in the cloud
imposes legal and policy implications for cloud providers. In
particular, some providers feel reluctant to direct hackers to
their networks and/or to collect malware data within their
infrastructure. This in fact could lead to harm their reputa-
tion (hosting the compromised system) and even to block
their IP ranges and domains, thus impacting their market
shares. Therefore, designing a honeypot solution in a cloud
environment should be done in carefulmanner.

8 CONCLUSION

This paper proposes a comprehensive detection and defense
mechanism for cloud-based systems that consists of the fol-
lowing phases: (1) risk assessment framework that evaluates
the risk level of each guest VM; (2) MTD-based defensemech-
anism that intelligently migrates services running inside risky
VMs to other more secure VMs; (3) machine learning tech-
nique that recognizes the types of attackers using honeypot
data; and (4) resource-aware Bayesian Stackelberg game that
aids the hypervisor in determining the optimal detection load
distribution strategy among VMs. Experiments conducted
using Amazon’s datacenter and AWSs honeypot data reveal
that our solution improves the detection performance up to

 7% and minimizes the percentage of attacked services
by
 15% compared to the state-of-the-art detection and
defense strategies, namely Collabra, probabilistic migration,
maxmin, one-stage Stackelberg, and fair allocation. As for
the efficiency, the experimental results show that As for the
efficiency, the experimental results show that our machine
learning technique needs
 330s to train in a dataset compris-
ing 65,000 rows and consisting of six types of attackers.
Finally, our detection load distribution strategy takes
 5:6s
to run in a cloud system of 50 co-hosted VMs and grows poly-
nomiallywith the increase in the number of co-hostedVMs.

ACKNOWLEDGMENTS

This work has been supported by the Fonds de Recherche
du Qu�ebec—Nature et Technologie (FRQNT), Natural Sci-
ences and Engineering Research Council of Canada
(NSERC), Khalifa University of Science, Technology &
Research (KUSTAR), Associated Research Unit of the
National Council for Scientific Research (CNRS-Lebanon),
and Lebanese American University.

REFERENCES

[1] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, “Optimal load
distribution for the detection of VM-based DDoS attacks in the
cloud,” IEEE Trans. Serv. Comput., 2017, doi: 10.1109/
TSC.2017.2694426.

[2] W. Peng, F. Li, C.-T. Huang, and X. Zou, “A moving-target
defense strategy for cloud-based services with heterogeneous and
dynamic attack surfaces,” in Proc. IEEE Int. Conf. Commun., 2014,
pp. 804–809.

[3] N. Provos, “A virtual honeypot framework,” in Proc. USENIX
Security Symp., 2004, vol. 173, pp. 1–14.

[4] M. R. Watson, A. K. Marnerides, A. Mauthe, D. Hutchison, et al.,“
Malware detection in cloud computing infrastructures,” IEEE
Trans. Dependable Secure Comput., vol. 13, no. 2, pp. 192–205,
Mar.-Apr. 2016.

[5] “Amazon EC2 instances,” [Online]. Available: https://aws.
amazon.com/ec2/details/, Accessed on: May 16, 2017

[6] “Amazon Web Services honeypot data,” [Online]. Available:
http://datadrivensecurity.info/blog/pages/dds-dataset-
collection.html, Accessed on: May 16, 2017.

[7] B. Li, P. Liu, and L. Lin, “A cluster-based intrusion detection frame-
work for monitoring the traffic of cloud environments,” in Proc.
IEEE 3rd Int. Conf. Cyber Security Cloud Comput., 2016, pp. 42–45.

[8] T. Alharkan and P. Martin, “IDSaaS: Intrusion detection system as
a service in public clouds,” in Proc. 12th IEEE/ACM Int. Symp.
Cluster Cloud Grid Comput., 2012, pp. 686–687.

[9] W. Lin and D. Lee, “Traceback attacks in cloud–pebbletrace
botnet,” in Proc. 32nd Int. Conf. Distrib. Comput. Syst. Workshops,
2012, pp. 417–426.

[10] J. S. Ward and A. Barker, “Varanus: In situ monitoring for large
scale cloud systems,” in Proc. IEEE 5th Int. Conf. Cloud Comput.
Technol. Sci., 2013, vol. 2, pp. 341–344.

[11] P. Deshpande, S. C. Sharma, S. K. Peddoju, and S. Junaid, “HIDS:
A host based intrusion detection system for cloud computing
environment,” Int. J. Syst. Assurance Eng. Manage., vol. 9, no. 3,
pp. 567–576, 2018.

[12] S. Bharadwaja, W. Sun, M. Niamat, and F. Shen, “Collabra: A Xen
hypervisor based collaborative intrusion detection system,” in Proc.
8th Int. Conf. Inf. Technol.: NewGenerations, 2011, pp. 695–700.

[13] F. Lombardi and R. Di Pietro , “Secure virtualization for cloud
computing,” J.Netw. Comput. Appl., vol. 34, no. 4, pp. 1113–1122, 2011.

[14] J. B. Hong and D. S. Kim, “Assessing the effectiveness of moving
target defenses using security models,” IEEE Trans. Dependable
Secure Comput., vol. 13, no. 2, pp. 163–177, Mar.-Apr. 2016.

[15] S. G. Vadlamudi, S. Sengupta, M. Taguinod, Z. Zhao, A. Doup�e,
G.-J. Ahn, and S. Kambhampati, “Moving target defense for web
applications using bayesian stackelberg games,” in Proc. Int. Conf.
Autonomous Agents Multiagent Syst., 2016, pp. 1377–1378.

[16] A. R. Hota, A. A. Clements, S. Sundaram, and S. Bagchi, “Optimal
and game-theoretic deployment of security investments in inter-
dependent assets,” in Proc. Int. Conf. Decision Game Theory Security,
2016, pp. 101–113.

[17] A. Clark, K. Sun, L. Bushnell, andR. Poovendran, “A game-theoretic
approach to ip address randomization in decoy-based cyber
defense,” in Proc. Int. Conf. Decision Game Theory Security, 2015,
pp. 3–21.

[18] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, “I know you
are watching me: Stackelberg-based adaptive intrusion detection
strategy for insider attacks in the cloud,” in Proc. IEEE Int. Conf.
Web Services, 2017, pp. 728–735.

[19] M. J. Osborne and A. Rubinstein, A Course in Game Theory. Cam-
bridge, MA, USA: MIT Press, 1994.

[20] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory,
vol. 23, Philadelphia, PA, USA: SIAM, 1999.

[21] D. Perez-Botero , J. Szefer, and R. B. Lee, “Characterizing hypervisor
vulnerabilities in cloud computing servers,” in Proc. Int. Workshop
Security Cloud Comput., 2013, pp. 3–10.

[22] “National Vulnerability Database,” [Online]. Available: http://
web.nvd.nist.gov/view/vuln/search, Accessed on: May 16, 2017

[23] “Securityfocus,” [Online]. Available: http://www.securityfocus.
com/, Accessed on: May 16, 2017

[24] “Red Hat Bugzilla,” [Online]. Available: https://bugzilla.redhat.
com/, Accessed on: May 16, 2017

[25] “CVE Security Vulnerability Database,” [Online]. Available:
http://www.cvedetails.com/, Accessed on: May 16, 2017

[26] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, “A stackelberg
game for distributed formation of business-driven services comm-
unities,” Expert Syst. Appl., vol. 45, pp. 359–372, 2016.

[27] P. Paruchuri, J. P. Pearce, J. Marecki, M. Tambe, F. Ordonez, and
S. Kraus, “Playing games for security: An efficient exact algorithm
for solving bayesian stackelberg games,” in Proc. 7th Int. Joint
Conf. Auton. Agents Multiagent Syst., 2008, pp. 895–902.

[28] T. S. Ferguson, “Game theory,” LosAngeles, CA, USA:Mathematics
Department, UCLA, 2008.

[29] B. Guttman and E. A. Roback, An Introduction to Computer Security:
The NIST Handbook. Darby, PA, USA: DIANE Publishing, 1995.

WAHAB ET AL.: RESOURCE-AWARE DETECTION AND DEFENSE SYSTEM AGAINST MULTI-TYPE ATTACKS IN THE CLOUD: REPEATED... 621

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TSC.2017.2694426
http://dx.doi.org/10.1109/TSC.2017.2694426
https://aws.amazon.com/ec2/details/
https://aws.amazon.com/ec2/details/
http://datadrivensecurity.info/blog/pages/dds-dataset-collection.html
http://datadrivensecurity.info/blog/pages/dds-dataset-collection.html
http://web.nvd.nist.gov/view/vuln/search
http://web.nvd.nist.gov/view/vuln/search
http://www.securityfocus.com/
http://www.securityfocus.com/
https://bugzilla.redhat.com/
https://bugzilla.redhat.com/
http://www.cvedetails.com/

[30] Y. Han, J. Chan, T. Alpcan, and C. Leckie, “Using virtual machine
allocation policies to defend against co-resident attacks in cloud
computing,” IEEE Trans. Dependable Secure Comput., vol. 14, no. 1,
pp. 95–108, Jan.-Feb. 2017.

[31] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose , and
R. Buyya, “Cloudsim: A toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms,” Softw.: Practice Exp., vol. 41, no. 1, pp. 23–50,
2011.

[32] J. Jacobs and B. Rudis, Data-Driven Security: Analysis, Visualization
and Dashboards. Hoboken, NJ, USA: Wiley, 2014.

[33] W. Wang, B. Liang, and B. Li, “Multi-resource fair allocation in
heterogeneous cloud computing systems,” IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 10, pp. 2822–2835, Oct. 2015.

[34] J. Pita, M. Jain, F. Ord�onez, C. Portway, M. Tambe, C. Western,
P. Paruchuri, and S. Kraus, “Using game theory for los angeles air-
port security,”AIMagazine, vol. 30, no. 1, 2009, Art. no. 43.

Omar Abdel Wahab received the MSc degree in
computer science from the Lebanese American
University (LAU), Lebanon, in 2013, and the PhD
degree in information and systems engineering
from Concordia University, Montreal, Canada. He
is an assistant professor with the Department of
Computer Science and Engineering, Universit�e du
Qu�ebec en Outaouais, Canada. From 2017 to
2018, he was a postdoctoral fellow with the �Ecole
de technologie sup�erieure (ETS), Montreal,
Canada. The main topics of his current research

activities are in the areas of artificial intelligence, cybersecurity, cloud com-
puting, and big data analytics. He is recipient of many prestigious awards
including Quebec Merit Scholarship (FRQNT Qu�ebec). Moreover, he is a
TPC member of several prestigious conferences and reviewer of several
highly ranked journals.

Jamal Bentahar received the bachelor’s degree in
software engineering from the National Institute of
Statistics and Applied Economics, Morocco, in
1998, the MSc degree in software engineering
from Mohamed V University, Morocco, in 2001,
and the PhD degree in computer science and soft-
ware engineering from Laval University, Canada,
in 2005. He is a full professor with the Concordia
Institute for Information Systems Engineering, Fac-
ulty of Engineering and Computer Science, Con-
cordia University, Canada. From 2005 to 2006, he

was a postdoctoral fellow at Laval University, and then Simon Fraser Uni-
versity, Canada. His research interests include the areas of computational
logics, model checking, multi-agent systems, service computing, game
theory, and software engineering. He is amember of the IEEE.

Hadi Otrok received the PhD degree in ECE from
Concordia University. He holds an associate pro-
fessor position with the Department of ECE at Kha-
lifa University, an affiliate associate professor with
the Concordia Institute for Information Systems
Engineering at Concordia University, Montreal,
Canada, and an affiliate associate professor with
the electrical department at �Ecole de technologie
sup�erieure (ETS),Montreal, Canada.He is a senior
member of the IEEE, associate editor at: IEEE
communications letters and Ad hoc Networks

(Elsevier), and a co-chair of several committees at various IEEE conferen-
ces. His research interests include Computer and Network Security, Web
Services and Cloud Computing, Ad hoc Networks,Application of Game
Theory andMechanismDesign.

AzzamMourad received thePhDdegree in electri-
cal and computer engineering from Concordia Uni-
versity, Montreal, Canada. He is an associate
professor of computer science at the Lebanese
American University and adjunct associate profes-
sor with the Sotware Engineering and IT Depart-
ment at �Ecole de technologie sup�erieure (ETS),
Montreal, Canada. His research interests include
Information Security, Web Services, Mobile Cloud
Computing, Big Data Analysis, Vehicular Net-
works, and Formal Semantics. He is coordinator of

theAssociatedResearchUnit on Intelligent Transport &Vehicular Technol-
ogies. He is serving as associate editor for IEEE Communications Letters,
General Co-Chair of WiMob2016, and Track Chair, TPC member and
reviewer of several prestigious conferences and journals. He is a senior
member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

622 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

