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Abstract—Cloud-based systems are subject to various attack types launched by Virtual Machines (VMs) manipulated by attackers
having different goals and skills. The existing detection and defense mechanisms might be suitable for simple attack environments but
become ineffective when the system faces advanced attack scenarios wherein simultaneous attacks of different types are involved. This
is because these mechanisms overlook the attackers’ strategies in the detection system’s design, ignore the system’s resource
constraints, and lack sufficient knowledge about the attackers’ types and abilities. To address these shortcomings, we propose a
repeated Bayesian Stackelberg game consisting of the following phases: risk assessment framework that identifies the VMs’ risk levels,
live-migration-based defense mechanism that protects services from being successful targets for attackers, machine-learning-based
technique that collects malicious data from VMs using honeypots and employs one-class Support Vector Machine to learn the attackers’
types distributions, and resource-aware Bayesian Stackelberg game that provides the hypervisor with the detection load’s optimal
distribution over VMs that maximizes the detection of multi-type attacks. Experiments conducted using Amazon’s datacenter and
Amazon Web Services honeypot data reveal that our solution maximizes the detection, minimizes the number of attacked services, and
runs efficiently compared to the state-of-the-art detection and defense strategies, namely Collabra, probabilistic migration, Stackelberg,

maxmin, and fair allocation.

Index Terms—Adversarial artificial intelligence, intrusion detection, game theory, machine learning, data-driven optimization,

Moving Target Defense (MTD), honeypots, security risk assessment

1 INTRODUCTION

SECURITY concerns have accompanied the notion of cloud
computing since its inception until now. On the one
hand, it is crucial to assure security in cloud systems since
cloud data centres are supposed to provide a safe and
secure environment for users and providers to host and
access their data and resources. On the other hand, cloud-
based systems are exposed to a wide set of security threats;
even more than those that target traditional computing sys-
tems because of the cloud’s virtual and elastic properties
[1]. Practically, each operation/communication occurring at
the cloud’s virtualization layer (e.g.,, CPU virtualization,
memory management, etc.) can be subject of various
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malicious attacks. Although the common high-level goal of
all attackers is to cause financial/performance damage, the
low-level objective of each particular attacker varies accord-
ing to the attack’s target and magnitude of damage intended
to cause. For example, some attackers might aim to crash the
hypervisor to stop the functioning of the whole cloud sys-
tem, whilst others might be interested in disrupting some
particular VMs pertaining to a specific client. We consider
in this work a complex and realistic attack scenario in which
the cloud system faces multiple simultaneous types of
attacks launched by attackers having distinct skills and
objectives. The considered attackers are deemed to be intel-
ligent in the sense that they are continuously observing the
detection strategies of the cloud systems and updating their
attack strategies accordingly with the aim of maximizing
their attack success chances.

Problem Statement. Although plenty of Intrusion Detection
Systems (IDSs) for cloud-based applications can be found in
the literature, most of these techniques are developed and
upgraded from traditional detection techniques used in non-
cloud environments, which limits their effectiveness when
applied in a cloud setting [1]. In fact, the existing detection
systems can be classified into three main branches: network-
based, host-based, and hypervisor-based IDSs [1]. Network-
based systems put the monitoring agents at the network’s
level to monitor the circulating traffic and recognize any
malicious behavior. The fact that these systems operate at the
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network’s layer only makes them unable to catch insider
attacks that sneak into the internal virtualized system. To
remedy this shortcoming, host-based IDSs deploy the moni-
toring agents at the VMs’ layer to monitor their activities and
report any abnormal behavior. The main limitation of this
approach lies in the burdens it puts on the users who are
required to spend their own resources and efforts to main-
tain the health of the monitoring agents. To alleviate these
burdens, hypervisor-based systems place the monitoring
agents at the cloud system’s layer and assign to the host
hypervisors the role of observing the VMs’ system metrics
and identifying malicious activities.

Unfortunately, all of the three branches of IDSs suffer
from four essential problems that limit their performance in
practical cloud systems. First, they are based on the simplis-
ticidea of monitoring and analyzing events without account-
ing for the malicious strategies of the attackers that take
advantage of the cloud’s virtual and elastic features to per-
plex the detection system and complicate the detection pro-
cess [1]. This raises the need for elaborating an up-to-date
intelligent detection technique that considers the strategies
of the attackers in its design to increase the awareness of the
cloud system and enable it to cope with complex attack sce-
narios. Second, the current IDSs do not explain how to deal
with the cloud system’s limited security resources problem
in the detection process; thus assuming (directly or indi-
rectly) that the cloud system is able to provide permanent
and full detection coverage on all its nodes. However, it is no
secret that the magnitude of resources that can be devoted to
detection is bounded by a certain budget that is determined
in such a way that does not affect the portion of resources
consecrated to serving clients. This necessitates thinking of a
resource-aware selective detection strategy that distributes
the cloud system’s detection load among the different VMs
so that it respects the limited security resources” budget and
maintains at the same time optimal detection effectiveness.
Third, the existing IDSs rely on a simplistic attack scenario
which supposes that attackers launch their attacks without
having prior knowledge of the intrusion detection arrange-
ments adopted by the cloud system. Albeit such an assump-
tion might hold for some limited time, attackers are
becoming smart enough to observe the cloud system’s detec-
tion strategies over time and adjust their own attack strate-
gies accordingly in order to complicate and confuse the
detection process. Fourth, the current detection approaches
lack for real-time learning about the types and objectives of
the attackers targeting the cloud system; which deprives
them from valuable information that can be used to adjust
and optimize the cloud system’s detection strategies over
time.

Contributions. The goal of this work is to develop a com-
prehensive detection and defense mechanism against multi-
type attacks in the cloud. To the best of our knowledge, this
work is the first that advances such a comprehensive detec-
tion and defense strategy against multiple types of attacks
in the domain of cloud computing. The proposed solution is
presented in the form of a repeated Bayesian Stackelberg
game that consists of four phases executed repeatedly to
provide the cloud system with incremental and continuous
learning about the attackers’ strategies and objectives and
the VMs’ actual security status. The first phase is concerned

with evaluating the risk level of each VM on the basis of its
potential vulnerabilities, expected threats, and past attack
history. Based on the results obtained from the risk assess-
ment phase, the services deployment phase introduces an
intelligent defense mechanism inspired by the Moving Tar-
get Defense (MTD) concept [2], which migrates services
running inside risky VMs toward other more secure VMs.
The risky VMs, running no active services, are exploited in
the attackers’ types recognition phase through deploying
honeypots [3] inside them to collect malicious data from
attackers. This data is then analyzed using a one-class Sup-
port Vector Machine (SVM) learning classifier [4] to deter-
mine the types and objectives of the attackers targeting the
cloud system. Using this information, we design a resource-
aware Bayesian Stackelberg game whose goal is to provide
the cloud system with the optimal detection load distribu-
tion strategy over the set of VMs that maximizes the detec-
tion of simultaneous attacks of multiple types. In summary,
the main contributions of this work are:

e Designing and solving a Bayesian Stackelberg game
that guides the cloud system to determine the opti-
mal detection load distribution strategy among VMs
that maximizes the detection of multi-type intelligent
attacks. To the best of our knowledge, this strategy is
the first in the domain of cloud computing that is
able to maximize the detection in such a complex
(yet realistic) attack environment wherein the cloud
system is supposed to face simultaneous attacks of
different types launched by intelligent attackers.

e Proposing a risk assessment framework that assists
the cloud system with evaluating the risk level of each
VM and identifying the risky ones that are likely to be
targets for attacks. For this purpose, we formulate a
risk level determination model that capitalizes on the
VMs’ potential vulnerabilities, expected threats, and
past attack history to make thoughtful decisions.

e Developing an MTD-based defense mechanism that
protects cloud services from being successful targets
for attackers. This is done by putting forward an
intelligent security-oriented live migration strategy
that allows the hypervisor (acting on behalf of the
cloud system) to migrate the services running inside
risky VMs to other more secure ones.

e DPutting forward an attackers’ types recognition tech-
nique that provides the hypervisor with a detailed
view of the types and objectives of the attackers tar-
geting the cloud system. This is achieved by devel-
oping a honeypots’ deployment strategy inside risky
VMs to collect malicious data and proposing a one-
class SVM learning classifier which analyzes this
data and predicts the actual types of the attackers.

The performance of the proposed solution is evaluated

using real data from Amazon’s public datacenter’s [5] and
honeypot data from Amazon Web Services (AWSs) [6]. Exper-
imental results reveal that our solution maximizes the detec-
tion performance and minimizes the number of attacked
services compared to the existing detection and defense strat-
egies, namely Collabra, probabilistic migration, maxmin, one-
stage Stackelberg, and fair allocation. Moreover, experimental
results show that our solution achieves acceptable execution
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time and is scalable to the increase in both the number of
co-hosted VMs and percentage of co-resident malicious VMs.

Paper Outline. Section 2 reviews the current IDSs
proposed for cloud-based environments. In Section 3, we
formulate the problem and illustrate the attack model con-
sidered in this work. In Section 4, we design the Bayesian
Stackelberg game proposed to derive the optimal detection
load distribution strategy among VMs and demonstrate
how to solve it using the backward induction reasoning.
Section 5 explains the details of the repeated Bayesian Stack-
elberg game that provides a comprehensive detection and
defense system. In Section 6, we describe the experimental
environment and present experimental results. In Section 7,
we provide a detailed discussion on the originality of this
work compared to the state-of-the-art. Finally, Section 8
recapitulates the main insights of the paper.

2 RELATED WORK

The main intrusion detection techniques proposed for
cloud-based systems can be classified into three major cate-
gories: network-based, host-based, and hypervisor-based
systems [1].

2.1 Network-Based IDSs

In [7], the authors discuss an intrusion detection framework
that monitors network traffic using a cluster-based architec-
ture to support multiple security domains. The basic idea is
to export the intra-VM network traffic to be processed by a
physical IDS. Moreover, a traffic deduplication technique is
advanced to remove redundant network traffic and mini-
mize the overhead.

In [8], a customer-controllable on-demand IDS is
introduced. The network interactions among VMs within a
pre-defined virtual network are monitored and suspicious
activities are registered and analyzed. The performance of
the framework is adaptable based on the volume of traffic
load in the network, where, for example, the number of IDS
components can be adjusted on the basis of the amount of
traffic circulating inside the network.

DoS attacks have been studied in [9], where the authors
offered a method to trace the botmaster (i.e., administrator of
the botnets) back. According to this method, the local net-
work admin of the victim node has to gather data related to
the network traffic between the Command-and-Control
(C&CQC) servers and bots as well as the hostname of the C&C
server. This data is then communicated to a traceback service
whose role is to embed Prebbleware, a piece of code that
uncovers its host machine’s information, on the communica-
tion packets between the botmaster and victim machine.

2.2 Host-Based IDSs
In [10], a multi-tier detection model for large-scale clouds
called Varanus is proposed. The basic idea is to split VMs
into a set of groups using the k-nearest neighbor algorithm
based on the similarity among their configuration settings.
Thereafter, the VMs belonging to the same cluster exchange
their monitoring information and the under-utilized VMs
are selected to analyze the whole collected data.

In [11], the authors discuss a host-based intrusion detec-
tion technique that selectively monitors (only) the failed

system call traces of the VMs. These traces are then ana-
lyzed and classified either normal or malicious using
k-nearest neighbor. Finally, users are alerted of any mali-
cious activity in their system.

2.3 Hypervisor-Based IDSs

In [4], the authors propose an online anomaly detection tech-
nique that operates at the hypervisor’s layer. The system
architecture consists of four main components, namely the
Cloud Resilience Manager (CRM), System Resilience Engine
(SRE), Network Analysis Engine (NAE), and System Analy-
sis Engine (SAE). At the first stage, the CRM deployed on
each cloud node collects features from the VMs and their
local networks and sends this data to the NAE and SRE com-
ponents. These two latter components employ the one-class
SVM to carry out a local anomaly detection.

The authors of [12] advanced Collabra, a distributed IDS
that is integrated into Xen hypevisors to preserve the secu-
rity of the cloud system. Collabra scans each hyper-call
made by every application of the VMs to guarantee the
integrity of the cloud infrastructure and ensure fail-safe
transaction processes. Collabra performs in a collaborative
fashion to enhance the results of the real-time detection.

Lombardi and Di Pietro propose in [13] a virtualization-
supported detection technique called Advanced Cloud Pro-
tection System (ACPS). In ACPS, the system-call invocations
of the VMs are constantly watched by an entity situated in
the kernel space of the host called Interceptor. The suspected
activities are then registered and prioritized into a Warning
Pool. Finally, the Evaluator entity inspects these activities to
make the appropriate decision on whether there exists a
security threat or not.

2.4 Game-Theoretic Approaches for Security
Applications

In [14], the authors aim to answer the challenge of efficiently
deploying MTD techniques in large-sized networked sys-
tems. To this end, they propose to integrate the Shuffle,
Diversity, and Redundancy MTD techniques into the Hier-
archical Attack Representation Model (HARM) to assess
their security levels. They employ as well several impor-
tance measures to choose highly important network compo-
nents on which MTD techniques should be deployed.

In [15], the authors propose an MTD technique to improve
the security of Web applications. They modeled the problem
as a Bayesian Stackelberg game whose leader is the Web
administrator and followers are the hackers which can be of
different types. They formulated an optimization problem
whose solution guides the administrator to find the configu-
ration switching strategy that best maximizes the system’s
security while accounting for the associated switching costs.

In [16], a systematic framework is introduced to derive the
optimal defense allocation strategies under interdependen-
cies (e.g., assets owned by the same vendor), where such
interdependencies are modeled using an interdependency
graph. Attackers are thus assumed to take advantage of those
interdependencies to attack valuable assets in the network.
Specifically, a game is modeled among multiple defenders,
each of which is responsible for protecting a set of assets. The
objective of each defender is to minimize its own expected
loss knowing that the attack probabilities on its assets
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depend on its own defense actions, the actions of the other
defenders, and the interdependency graph.

In [17], the authors formulate a game theoretical model
between an external adversary and a network of decoy nodes
and propose a framework of two phases. In the first phase,
the interactions between the adversary and one single decoy
node are studied, especially the cases where the adversary
(1) tries to recognize the decoy node through observing the
timing of node responses, and (2) studies the differences in
protocol implementations between decoy and real nodes in
order to identify the decoy ones. The outcome of this phase is
the time for an adversary to learn whether a certain node is
real or decoy. In the second phase, games between an adver-
sary trying to discover real nodes in a network of real and
decoy nodes are formulated. The outcome of this phase is the
optimal policy of the system to randomize the IP address
space to complicate the recognition of real nodes.

While MTD-based techniques and Bayesian Stackelberg
games have already been used in the security domain, our
work is the first that employs them in a cloud computing
environment to model the hypervisor-VM relationship,
while taking into account that the attacks can be distributed
across several VMs to complicate the detection process.
Moreover, we propose in this work a risk assessment strat-
egy to evaluate the risk level of each VM, followed by a hon-
eypot deployment technique to collect data from attackers
and a machine learning technique to analyze this data and
extract relevant knowledge regarding the attacker types’
probability distributions. This information is then integrated
into a Bayesian Stackelberg game to optimize the intrusion
detection decisions. Such a data-driven optimization meth-
odology for improving the security decisions in terms of
detecting multi-type attacks is novel and has not been
employed yet in the literature.

2.5 Discussion and Unique Features of Our Solution
The existing IDSs suffer from two principal limitations that
make them insufficient to deal with practical cloud-based
systems. In the first place, they totally ignore the attackers’
strategies in the design of the detection system, which mini-
mizes their chances of capturing sophisticated attacks. In the
second place, they do not explain how the proposed detection
techniques can work under a limited budget of security
resources, which restricts their effectiveness in realistic
resource-constrained applications. In a recent work [1], a
maxmin-based detection load distribution strategy has been
developed by our research group. Specifically, a maxmin
game is modeled between the attackers trying to minimize
the cloud system’s detection probability by distributing their
attacks over a set of VMs and the hypervisor trying to maxi-
mize this minimization by optimally distributing the detec-
tion load among VMs. Similar to our current work, this work
takes into consideration the strategies of the attackers in the
design of the detection system and is able to work using a lim-
ited budget of security resources. Beyond this work, our solu-
tion is able to deal with a more complex attack scenario
wherein attackers are able to observe the cloud system’s
detection strategies and adapt their attack plans accordingly.
In a preliminary version of this work, we proposed a one-
stage Stackelberg game [18] that provides the hypervisor with
the optimal detection load distribution strategies; while

considering the strategies and abilities of the attacker but
abstracting on the types of attackers. This paper builds on and
extends our previous work by offering (1) a risk assessment
framework that helps the hypervisor determine the risk level
on each VM; (2) an MTD-based defense mechanism that intel-
ligently migrates services running inside risky VMs into other
more secure VMs; (3) an attackers’ types recognition tech-
nique that collects malicious data from VMs using honeypots
and analyzes them using one-class SVM; and (4) a Bayesian
Stackelberg game that accounts for the distributions of the
attackers’ types in the design of the problem to increase the
awareness of the hypervisor and help it optimize its detection
load distribution strategies. Finally, our solution runs in a
repeated fashion to provide the hypervisor with incremental
and continuous learning about the attackers strategies and
skills and the cloud system’s current security status. The two
versions are compared experimentally as well to verify the
improvements brought to the work by our new amendments.

3 PROBLEM FORMULATION

We illustrate in this section the problem formulation and
explain the attack model considered in the rest of the paper.

3.1 System Model

Our system model consists of a set of virtual machines V' =
{v1,v9,...,v;} hosted on a shared hypervisor. Note that
when i € {1,...,k} can be understood from the context, we
simply use v instead of v;. These VMs might be either well-
behaving or attacking. Well-behaving VMs are those that aim
at doing their jobs smoothly without having the intention to
harm neither the cloud system nor other VMs. On the other
hand, attacking VMs seek to harm the cloud system and/or
other co-hosted VMs by continuously and collaboratively
sending malicious code fragments to form distributed mali-
cious attacks. Such VMs might be either (1) malicious in case
their real owners create the attacks or (2) compromised in
case the source of attacks is a third party that manipulates
VMs and injects its malicious code through them.' Each
attacking VM is of type y € Y, where Y denotes the set of all
attackers’ types (e.g., privilege escalation, DoS attackers, etc).
Knowing this fact, the cloud system has to find the optimal
detection strategy that maximizes the detection of such
attacks. To do so, the hypervisor, acting on behalf of the cloud
system, has a specific amount of resources R that comprises
both the amount R. of resources to be dedicated to serving
clients and the amount R, of resources to be dedicated for
intrusion detection such that R = R. + R,. Thus, the objec-
tive of the hypervisor becomes finding the optimal detection
load distribution strategy that maximizes the detection of dis-
tributed attacks, while respecting the budget R, of resources.
We model this situation as a repeated Bayesian Stackelberg
security game of two players, i.e., hypervisor and attackers.
In game theory, a game is said to be Bayesian if some players
are unsure about the types, preferences, or payoffs of other
players [19]. Our game is Bayesian since the hypervisor is
uncertain about the types of attackers that might be targeting
the cloud system. Specifically, we consider an attack model

1. In the rest of the paper, the term attacker is used to refer to both
cases.
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in which multiple attackers of different types (e.g., Denial of
Service, privilege escalation, etc.) are expected to target the
cloud system. The game is played sequentially in the sense
that the hypervisor representing the leader of the game com-
mits first to a certain detection load distribution strategy and
then attackers (followers of the game) choose their attack dis-
tribution strategy after having observed the hypervisor’s
strategy implementation. Note that the proposed game is
dynamic. Specifically, a game is said to be dynamic if it satis-
fies one of the two following conditions [20]. The first condi-
tion is achieved when the interaction among players is itself
inherently dynamic in the sense that the players are able to
observe each other’s actions prior to making decisions
regarding their optimal responses. The second condition is
achieved when a one-off game is repeated a number of times,
thus allowing players to examine the outcomes of previous
games before playing later ones. Our proposed game satisfies
both conditions and can hence be considered a dynamic
game. In fact, we assume that attackers have the ability to
observe the security arrangements adopted by the hypervisor
over time to learn which VMs are better protected than others
and update their attack strategies accordingly. Moreover, our
game is played repeatedly, where at each stage of the game,
the probability distributions over the attacker types and the
utility of the hypervisor for each of its VMs are (potentially)
subject to change (see Section 5 for more details).

In the following, we define the individual utility functions
for both hypervisor and attacker. In fact, based on the strate-
gies adopted by both the hypervisor and attacker, a reward
is assigned to each of these parties. Particularly, when the
hypervisor, facing an attack of type , selects the pure strat-
egy i (i.e.,, monitoring v;) and the attacker selects the pure
strategy j (i.e., attacking through v;), the hypervisor receives
areward of R/;(t) and the attacker receives a payoff of Q;(t).
The reward function of the hypervisor is defined as follows:

h h
RY(t) = { /\“"'(h) X Wy = MOTh;

] 7/ —
J v X Ky — MOy,

ifi=j
ifi#j (w
The first part of this reward function represents the success
of the hypervisor in protecting the virtual machine v; € V; of
worth w’j,’l_ (the worth of a VM depends mainly on its price as
well as on its hardware, network, and storage configuration)
minus the cost mon,, of monitoring the virtual machine
v; € V. Since the success of detection depends heavily on the
IDS’s detection probability as mentioned earlier, the reward
of the hypervisor at time ¢ is weighed based on its accumu-
lated average detection success rate )\’L (t) for all times prior
tot (i.e., based on the historical data of the previous detection
processes). The second part of the reward function repre-
sents the loss of the hypervisor incurred by not monitoring
the VM wv; that is being attacked, which is function of the
worth of that VM for the hypervisor times the degree of dam-
age i, caused by the attack of type y on v;, minus the moni-
tormg cost of the VM v; that was not targeted by the attack.
Then, the utility of the hypervisor for each VM v; can be
modeled as the discounted sum of the reward function
R}(t) across time periods and is depicted as follows:

Zﬁl/t % Rll (2)

The reason we multiply the reward function RY;(t) by g'/'
is to give more weight to the recent rewards compared to
the older ones in the time interval [t1, t5].

On the other hand, the attacker’s payoff S}; would be:

if i # j
ifi=j

vty = 4 W X Ky Aty
i —wl X X (1) — att,,

This first part of the attacker’s payoff function represents
the success of the attacker in assaulting through VM v; that
has not been monitored by the hypervisor, which is function
of the worth of v; multiplied by the degree «} of damage

(3)

caused by attacking through v; minus the cost att of prepar-
ing the attack on v;. The second part of the reward function
represents the attacker’s failure in launching its attack
through VM v;, which is function of the worth of that VM
times the probability Aj (¢) that the attack through this moni-
tored VM would be actually captured by the hypervisor
(based on the attacker’s historical observations), minus the
cost att,, of launching the attack through this VM.

Then, the utility of the attacker for each VM wv; can be
modeled as the discounted sum of the reward function

7(t) across time periods and is depicted as follows:

Zﬂl/t % SU (4)

3.2 Overview of Existing Vulnerabilities and Attacks
on Virtual Machines

We consider in this work the attacks that occur at the cloud
system'’s virtualization surface which offers attackers with a
new appealing security attack vector. Roughly speaking,
each functionality provided by the hypervisor (e.g., CPU vir-
tualization, VM management, etc.) can include some vulner-
abilities that attackers might exploit to carry out their
malicious activities. We discuss in the following some of the
attacks that might be exerted against the cloud system w.r.t
the corresponding vulnerabilities that might be exploited to
carry out such attacks. These attacks have been utilized
when performing our experiments as will be explained in
Section 6. The list of attacks along with their corresponding
vulnerabilities are summarized in Table 1. These attacks
have been inspired by the list of cloud-specific vulnerabilities
identified in [21] as a recapitulation of some real vulnerabil-
ities collected from the National Institute of Standards and
Technology (NIST)'s National Vulnerability Database
(NVD) [22], SecurityFocus [23], Red Hat’s Bugzilla [24] and
Code Vulnerabilities and Exposures (CVEs) [25]. The attacks
include co-hosted VMs’ memory modification, DoS, virtual
machine destruction, virtual machine crash, and privilege
escalation. The details about these attacks and how they
could be technically carried out can be found in Appendix A,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/TDSC.2019.2907946.

3.3 Assumptions
The following assumptions are considered in the rest of the
paper:
1)  Our solution is designed to model situations in which
the hypervisor has a fixed, limited, and known budget
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TABLE 1
List of Attacks w.r.t the Associated Vulnerabilities

Attacks
Co-hosted VMs” Memory Modification

Vulnerabilities

Soft Memory Management Unit
(MMU)

I/0 and networking
Interrupt and timer
Paravirtualized 1/0O

Denial of Service

VM exits
Virtual Machine Destruction VM Management
Virtual Machine Crash Hypercalls

Privileges Escalation Symmetric Multiprocessing (SMP)
Remote Management Software

Hypervisor Add-ons

of security resources R, that it cannot exceed when
distributing the detection load over VMs. We thus
assume that the hypervisor cannot provide full and
permanent detection coverage on all VMs at all times
since this will have negative effects on the share of
resources dedicated to serving clients and would lead
hence to decrease the overall revenue of the cloud
providers.

2) We assume that VMs worth differently for the hyper-
visor and attackers. This assumption is realistic since
each of these parties uses different criteria to evalu-
ate the importance of VMs. For example, the hyper-
visor might be more interested in the prices of the
VMs, while the attacker might care more about the
sensitivity of the data contained in the VM and/or
the potential vulnerabilities that are present on the
VM.

3)  The utility functions are designed in such a way that
makes the hypervisor not allocate any detection load
to those VMs, V C V, whose monitoring cost mon(v')
exceeds their worth wy, (v') for the hypervisor, Vo' € V.
This vision is mathematically implemented in Eq. (1)
by designing the hypervisor’s utility for a certain VM
in such a way to be negative when the monitoring
cost of that VM is lower than its worth.

4)  We assume that attackers can, over time, get an idea
of how the hypervisor is choosing the VMs to put
more detection load on. For example, after a certain
number of attack attempts on some VMs that have
particular configurations/characteristics, the attacker
might infer that all VMs having such configurations/
characteristics are highly monitored and hard to
attack and hence it will move to attacking other VMs.
This might be considered as a basic and incremental
learning process. Specifically, we do not assume that
the attacker is able to immediately learn the hyper-
visor’s strategy. Instead, the attacker observes the

TABLE 2
Hypervisor’s Payoff (DoS)
VM Worth Damage Monitoring cost
v 10 -3 3
vy 14 -1 6
U3 9 —1 2

TABLE 3
Attackers’ Payoff (DoS)
VM Worth Damage Attack cost
v 9 4 3
Vo 11 6 5
U3 6 1 0.5

previous moves of the hypervisor (as is the case in tra-
ditional Stackelberg games). However, the attacker
does not solely rely on its immediate previous obser-
vation; but instead it capitalizes on the cumulative
learning over time (obtained through multiple previ-
ous moves) to play its best response to the hyper-
visor’s strategies.

3.4 lllustrative Example

The core challenge in designing a Bayesian Stackelberg game
is to populate the payoff matrices of both the hypervisor and
attackers in a meaningful fashion. To do so, let’s first con-
sider a cloud system consisting of three VMs v, vy, and v
hosted on top of hypervisor h at time ¢. In Table 2, we high-
light the worth of each of those VMs for the hypervisor, the
cost entailed by monitoring each single VM, and the poten-
tial damage that might arise from attacking each VM. Simi-
larly, we show in Table 3 the worth of each considered VM
for the attacker, evaluate the cost entailed by launching an
attack through each of these VMs, and highlight the degree
of damage that the attacker might cause through launching
attacks through each particular VM. Assume now that the
average detection success rate of the hypervisor over the
three VMs is 0.7 (i.e., A (t) = X! () = Al (t) = 0.7) and that
the average attack sucess rate of the attacker over the three
VMs is 0.5 (e, Af (¢) = Ay, () = A7, (1) = 0.5). Suppose that
the cloud system is expected to face DoS attackers. Based on
the inputs from Tables 2 and 3 and the possible actions of
both players (i.e., hypervisor and attacker), Table 4 shows
the payoff values that each of these players would obtain.

In the payoff matrix (Table 4), the row represents the
hypervisor and the column represents the attacker. Thus,
R;;(t) represents the hypervisor’s utility when this hypervi-
sor is monitoring v; while the attacker is launching its attack
through v;. Similarly, Q;;(t) represents the attacker’s utility
when this attacker is attacking through v; while the hypervi-
sor is monitoring v;. For example, when the hypervisor mon-
itors v; and the DoS attacker chooses that same VM v; to
launch attack through, the hypervisor’s payoff would be
RDBeS(t) = 0.7 x 10 — 3 = 4 (Eq. (1)) for having successfully
protected v; and the attackers’ payoff would be QP0°(t) =
-9x0.5—-3=-75 (Eq. (3). On the other hand, if the
hypervisor chooses to monitor v; while attackers choose v, to
attack through, then the hypervisor would undergo a

TABLE 4
Payoff Matrix (DoS)
VM V1 (%) U3
1 4,-7.5 —33,61 —33,5.5
Vo —20,33 3.8,—-10.5 —20,5.5
U3 —11,33 —11,61 4.3,-35
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negative loss of R%(t)=-9x05—-3=-75 and the
attacker will have a positive payoff of Q72°(t) =11 x 6—
5 = 61. Having defined the utility matrices, the problem of
computing the optimal detection load probability distribu-
tion can now be solved using the simplex technique. For
space constraints, we are not able to show the details of this
technique. However, a detailed stepwise methodology for
solving optimization problems using simplex can be found
in our previous work published in [1].

4 ADAPTIVE DETECTION LOAD DISTRIBUTION
STRATEGY: BAYESIAN STACKELBERG GAME

We formulate in this section the intrusion detection problem
as a Stackelberg security game between the cloud system
and attackers. Practically, the hypervisor (acting on behalf
of the cloud system) plays the role of the game leader and
makes the first move by choosing its detection load distribu-
tion strategy over VMs, whereas attackers are the followers
that observe the leader’s strategy (Assumption 4 - Section
3.3) and choose their best responses to it in terms of attack
distribution strategies. The backward induction reasoning
[26] is employed to determine the optimal strategies of both
the cloud system and attackers. This is done by first deriv-
ing the best response of the attackers to a (fixed) observed
strategy of the cloud system and then integrating this best
response to the cloud system’s optimization problem to
help it select the optimal detection load distribution strate-
gies. Intuitively, this means that the cloud system antici-
pates that attackers will play their best responses to its
(observed) detection load distribution strategy and embeds
this knowledge into its optimization problem to select the
optimal detection load distribution strategy using this infor-
mation. Let L and F' denote the index sets of the hypervisor
(leader) and attacker’s (follower) pure strategies, respec-
tively. Let [ represent a vector of the hypervisor’s pure strat-
egies (a.k.a hypevisor’s policy) and f represent a vector of
the attacker’s pure strategies (a.k.a attacker’s policy). Thus,
the value /; would represent the proportion of times in
which the hypervisor plays the pure strategy 7 from its pol-
icy set, which means monitoring the VM v;. Similarly, the
value f; represents the proportion of times in which the
attacker plays the pure strategy j from its policy set, which
means attacking through VM v;.

Let us fix first the hypervisor’s policy to a certain policy .
After observing [ (i.e., the hypervisor’s vector of pure strate-
gies over time), the attacker needs to solve the following
linear programming optimization problem in order to deter-
mine its optimal response to [:

maximize ZZQ” X f] X lz'
JeF ieL
subject to Z fi=1, (5)
jeF
£ €0,1], VjeF.

Knowing the fixed strategy [ of the leader, the best
response f;(l) of the attacker should yield a non-negative
utility to the attacker, which means that Problem (5) has to
satisfy the following constraint:

fix> Qijx1i=0, VjeF (6)

i€l

Moreover, given that f;([) is the attacker’s best response
strategy, any deviation from this strategy (i.e., 1 — f;) would
lead the attacker to undergo a loss in terms of utility. Thus,
Problem (5) has to satisfy the following constraint as well:

(1=f) x> Qix1i<0, VjeF 7

i€l

In Eq. (7), f; represents the best pure strategy of the
attacker in response to the observed strategy [; of the hyper-
visor. Thus, f; can be either 0 or 1. In case the best response f;
is set to 1 meaning that the attacker chooses to attack, then
the deviation from f; would be 1 — f; =1—1=0 (do not
attack), which means that the utility of the attacker in this
case would be always 0 (i.e., 0 x .., Qi; x [;). Intuitively,
this means that the attacker would not gain (nor lose) any-
thing since it didn’t launch any attack. On the other hand, if
the best response of the attacker f; is set to 0 meaning that
the attacker chooses not to attack in response to the hyper-
visor’s observed strategy /;, then the deviation from f; would
be 1 — f; =1 —0 =1, which means that the attacker would
chose to attack. Then, the utility of the attacker will be always
negative, which represents the fact that the attack is unsuc-
cessful since the attacker will be caught by the hypervisor (as
a result of not playing the best response to the observed
hypervisor’s strategy), along with the cost spent to launch
this attack.

Let’s move now to the cloud system’s side. The hypervi-
sor, knowing that the attacker will play its best response f;(1)
to every hypervisor’s strategy [, incorporates this knowledge
into its optimization problem to determine the solution [ that
maximizes its own payoff. Thus, the hypervisor has to solve
the following problem:

maximize Z Z Ui; x fi(1) x 1
icL jeF
subject to Zli =1, (®)
i€l
l; €10,1], Vi€ L.

Problem (8) can be completed by incorporating the character-
ization of f;(I) depicted in Problem 5 and Egs. (6) and (7).
Taking into account the fact that given any optimal mixed
strategy f;(l), then all the pure strategies in its support are
also optimal [27], we can consider only the optimal pure
strategies of the attacker (which always exist) and symbolize
the optimal pure strategies using binary variables. Moreover,
to enhance the decisions of the hypervisor, we incorporate
the probability distribution p? of facing each type y € Y of
attackers into the hypervisor’s optimization problem. For
example, if the hypervisor learns that the majority of attack-
ers targeting the cloud system in a certain period are DoS
attackers, then it would adjust its detection load strategy
towards assigning more load to the VMs that are suspected
to be vulnerable to such attacks. In Section 5.3, we explain
how the hypervisor would be able to practically compute p.
Knowing all this information, the hypervisor’s problem
becomes:
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Bayesian Stackelberg Optimal Detection Load
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Risk Assessment | ________ Risk Level of each Virtual
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MTD-based Defense Live migration of services
Mechanism 77T running inside risky VMs
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Dos Attacker
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Hypervisor 1 Hypervisor 2 Hypervisor 3
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Fig. 1. Repeated Bayesian Stackelberg game phases: Bayesian stackelberg game, risk assessment, services deployment, and Honeypots deployment.

maxnnlzc Z Z Zpy x Ul x 1y x f}

yeY iel jeF
subject to Zli =1,
icL
jeF
(1= f) x> Qiyxli<0, VieF yeY
i€l
%y Qi x 120, YjEF, yeyY
i€l
l; €10, 1], Vie L
f] €{0,1}, VieF yeY.

9)
In Problem (9), the first and fifth constraints compel a fea-
sible mixed policy for the hypervisor, whereas the second
and sixth constraints compel a feasible pure strategy for the
attacker. The sixth constraint restricts as well the actions’
vector of the attacker to be a pure distribution over F'. The
third and fourth constraints force the best response f;(/) to
be optimal for the attacker in terms of gained utility. Problem
(9) is an integer program with a non-convex quadratic objec-
tive [27]. Thus, the final step would be converting the Mixed-
Integer Quadratic Programming (MIQP) at hand into a
Mixed-Integer Linear Programming (MILP) by removing the
non-linearity of the objective function. This can be achieved
by assigning the value of /; x f/ to a new variable 2};. Thus,
the problem becomes:

maxnmze E E E P! x Uj; x 2},

yeY iel jeF
subject to ZZ%: , Yy ey
el jeF
<y <, VjieF, yeY
el
jeF
(1= f) x> Qix 2, <0 VieF, yeY
S
fJXZQ1]XZJ>0 \V/jEF,yEY
€L
z}; €10,1], VieL jeF yeY
[} €{0,1}, VieF yeY.

(10)

Having linearized the problem, the MILP in Problem (10)
can be now solved using a linear programming solver tool
to derive the optimal mixed strategies of the cloud system
and attackers [28]. Note also that the probability distribu-
tions obtained form the Bayesian Stackelberg game are
changed from time to time (according the results of the risk
assessment phase), which adds an extra complication layer
to the attackers and makes it quite difficult for them to
breach the detection strategy of the hypervisor.

5 LEARNING-BASED DETECTION AND DEFENSE
SYSTEM: REPEATED BAYESIAN STACKELBERG
GAME

As depicted in Fig. 1, the repeated Stackelberg game con-
sists of four main phases: Bayesian Stackelberg game, vir-
tual machines’ risk assessment, services deployments and
defense mechanism, and attackers’ types recognition tech-
nique. These phases run repeatedly at each time unit ¢ of
the discrete time window [t1,%2]. The Bayesian Stackelberg
game (described in Section 4) computes the optimal proba-
bility distributions of the hypervisor’s detection load over
the guest VMs. To evaluate the effectiveness of the detection
strategy, the risk assessment phase enables the hypervisor
to conduct an in-depth study on the vulnerabilities and
threats that might be present on VMs and to analyze their
past attack history to derive the appropriate risk level of
each VM. Having identified the risky VMs, the goal of the
services deployment phase is to advance a defense mecha-
nism that protects services from being successful target for
attackers. This is done by offering a live-migration-based
decision making framework that allows the hypervisor to
migrate services hosted on VMs classified as risky to other
safer VMs. Finally, the honeypots deployment phase
exploits the idle VMs (running no active services) by
deploying honeypots inside them to collect malicious data
with the aim of studying and learning the behavior and
objectives of the attackers. The collected data is analyzed
using a one-class SVM classifier to predict the types of
attackers and learn about their probability distributions.
This information is used finally to feed the Bayesian Stackel-
berg game of the next time moment « + 1 with the probabil-
ity distributions over the attackers’ types to adjust and
optimize the hypervisor’s detection load distribution strate-
gies. Note that only the first two phases (Bayesian Stackel-
berg game and risk assessment) have to be continuously
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TABLE 5
Virtual Machine Worth Scale and Description

Worth Level Value Description

Important 6 The VM has sophisticated hardware, networking,
and storage capabilities.

Medium 3 The VM has intermediate hardware, networking,
and storage capabilities.

Moderate 1 The VM has simple hardware, networking,

and storage capabilities.

repeated (i.e., every time unit of the discrete time window).
Specifically, the execution of the rest of the phases is depen-
dent on the output of the risk assessment phase. In other
words, if no VMs are suspected to be risky at a certain time
unit, there will be no need to proceed with the other subse-
quent steps at that time moment. In what follows, we
explain each phase of the repeated Stackelberg game in
detail and provide numerical examples.

5.1 Virtual Machines Risk Assessment

Having computed the optimal detection load distribution
strategy using the one-stage Bayesian Stackelberg game
described in Section 4, the hypervisor assesses in this phase
the risk level of each VM. The methodology used for risk
assessment is inspired mainly by that of the NIST [29], which
provides a comprehensive guide on how to evaluate the
security risk levels of Information Technology (IT) resources.
Specifically, the risk level of a VM v is estimated in terms of
the likelihood of exploiting a specific vulnerability that is pres-
ent on v to exert some attack along with the consequent impact
of that malicious act on v. Formally, the risk level assessment
function of VM v at the time moment ¢ € [¢;, ¢o] is calculated
as follows:

Risk,(t) = w,(t) X vy(t) x I(t), (11)
where w,(t) is the worth of v at time moment ¢, v,(t) is the
magnitude of impact resulting from the exploit of the vul-
nerabilities present on v at time moment ¢, and 9,(t) is the
threat likelihood on v at time moment ¢. Thus, the first step
in assessing the risk levels would be estimating the worth of
each virtual machine. The worth is an indicator of the
degree of damage that could be entailed by the exercise of
a certain attack on the VM. Obviously, the worth of a certain
VM is decided on the basis of its current hardware,
storage, and networking capabilities (e.g., memory, CPU,

TABLE 6
Vulnerability Scale and Description

Vulnerability Level Value Description

High 6 The exploit of the vulnerability results in
extremely painful losses for the VM and
cloud system as a whole. Such
vulnerabilities can include vCPUs, VM
management, SMP, paravirtualized I/O and

remote management software.

Medium 3 The exploit of the vulnerability results in
painful losses for the VM and cloud system.

Such vulnerabilities can include soft MMU.

Low 1 The exploit of the vulnerability results in
manageable losses for the VM. Such

vulnerabilities can include hypercalls.

TABLE 7
Threat Scale and Description

Threat Level Value

High 6

Description

The threat is extremely strong and performed by an
expert attacker. Such threats can include DoS, and
privilege escalation.

Medium 3 The threat is strong and performed by a motivated
attacker. Such threats can include co-hosted VMs’

memory modification and VM destruction.

Low 1 The threat is weak and performed by a non-
professional attacker. Such threats can include

virtual machines crash.

bandwidth, etc.). Table 5 shows a list of possible worth lev-
els, values, and descriptions that can be used to assess the
worths of the VMs.

The second step in the risk assessment process involves
identifying and listing the VM’s potential vulnerabilities that
attackers might take advantage of to carry out their malicious
attacks. In our case, we use the list of vulnerabilities identi-
fied in Table 1. Table 6 shows a list of possible vulnerability
levels, values, and descriptions that can be used to assess the
impacts of vulnerability exploitations on the VMs.

Having characterized the potential vulnerability exploita-
tion impacts, the third step is to determine the corresponding
threats that exploit the identified vulnerabilities to launch
attacks against VMs. For our risk assessment process, we
restrict the analysis to the list of attacks identified in Table 1.
Table 7 shows a list of some possible threats levels, values,
and descriptions that can be used to assess the threat likeli-
hood on the VMs.

Now that we have defined the worth, vulnerability, and
threat levels, we need to proceed with identifying the risk
levels scale to be used as a reference when deciding about
the VMs' risk levels. The risk levels scales and descriptions
are presented in Table 8.

We are now well-equipped to move forward with the risk
levels determination step, where the risk level of each VM is
computed using Eq. (11) after normalization. We give in
Table 9 a numerical example that clarifies how to compute
and determine the risk levels of three VMs based on the
worth, vulnerability, threat, and risk scales defined in
Tables 5, 6,7, and 8 respectively.

In Table 9, v; has to be classified as being low-risk
(according to Table 8), v, as moderately risky, and v; as
highly risky. Note that we multiply by 6 and divide by 216
(i.e., 6 x 6 x 6) in Table 9 to normalize the computed risk
level values [29].

Nonetheless, our risk assessment process is not yet com-
plete. In fact, despite its importance and effectiveness, the

TABLE 8
Risk Scale and Description

Risk Level  Risk Scale
High 5-6

Description

There is an urgent need to implement corrective
measures (e.g., live migration) to resume the normal
operation of the cloud system.

Medium 3-4 There is a need to implement corrective measures
within a reasonable period of time to resume the

normal operation of the cloud system.

Low 1-2 The risk does not constitute an obstacle to the

normal operation of the cloud system.
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TABLE 9
Risk Levels Determination Example
VM Worth  Vulnerability Impact ~ Threat Likelihood Risk
u 6 1 1 bxlxl s 6 = .17
v 6 3 6 636 5 6 — 3
vy 6 6 6 06 5 G — 6

above presented risk assessment is generic for all VMs and
does not take into account the past history of each VM. Prac-
tically, to make the risk analysis more realistic and thorough,
we have to consider the past attack history of the VMs in our
analysis. Therefore, we propose to integrate the attack
growth/decay (growth in case the number of attacks is
increasing and decay otherwise) factor e/*(*) of each VM v at
time moment ¢ into our risk level determination formula.
Thus, the risk assessment formula presented initially in
Eq. (11) becomes:

Risk,(t) = wy(t) X v,(t) x 9,(t) x etH=E=2k(®)

(12)
In(3(7)
]{IU(t) = m, (13)

where k,(t) is the attack growth/decay rate on v and N, (¢) is
the number of times v has been attacked at time moment ¢. As
depicted in Eq. (13), the attack growth/decay rate k,(t) is
computed based on the difference between the number of
attacks that existed at the two past consecutive time moments
t — 1 and t — 2. Assume that the risk calculations presented in
Table 9 were derived at time moment ¢ = 3 and that v; got
attacked three times at time moment ¢ = 1 and five times at
time moment ¢ = 2. We explain in the following how Eq. (13)
has been derived and how to practically compute the attack
growth factor &, (¢) of v; at time moment ¢ = 3. Specifically,
we have: 5 =3 x e? D) = 5/3 = b = In(5/3) = In
(eF"1B)) = In(5/3) = ky, (3) = kyy (3) = In(5/3) = 0.511. Thus, the
risk level of v; would be updated to become R, (3)=
0.17 x e2211x1 = ().283, where v, remains a low-risk VM.

5.2 MTD-Based Defense Mechanism

In the light of the results obtained from the risk assessment
phase, we discuss in this section an MTD-based services’
deployment strategy whose goal is to provide a defense mech-
anism to protect the services hosted in the cloud system from
being successful targets for attackers. Practically, we propose
a security-oriented live migration strategy [30] that allows the
hypervisor to migrate the services running inside VMs classi-
fied as risky to be hosted in other more secure VMs. To do so,
the hypervisor has to identify first the set of VMs that might
serve as replacements for the risky ones. Apart from security
considerations, determining such a set of VMs involves some
technical constraints, where the migration process should
maintain some technical compatibilities between the migra-
tion source and destination VMs. For example, the Operating
systems (OSs) of the source and destination VMs have to be
consistent since migration between distinct OSs (e.g., Win-
dows and Linux) might entail some technical complications
and unanticipated technological roadblocks. Moving to the
security perspective, the set of VMs that are eligible to serve

as replacements should evidently be selected to be non-risky
based on the risk assessment’s results.

Formally, let E,(t) denote the set of VMs that are eligible
to replace a VM v at time moment ¢. These VMs satisfy thus
the aforementioned technical constraints and are classified
as low-risk in the risk assessment phase. Also, let p, ()
denote the percentage of worth increase between v and v at
time moment ¢, which is calculated as per

(t) wh(t) 7(11)11 (t)
S = wy(t ?
p oo,

if wv(t)*(“)’v(t) > ()
wy(t —
otherwise

(14)

Let v* be the VM that gives the minimum worth increase per-
centage W.r.t v, i.e., py—+ (t) = min(py—.,, (t)), Yo, € E,(t).
The decision of the hypervisor to migrate a service running
inside v to another VM v/ € E,(t) is taken as follows:

o if E(t)#0 and p, .,(t) # +oo, the hypervisor
selects the VM v* that gives the least percentage
increase in the worth value p,_.,+(t) compared to v.

e if E,(t) =0 or p,_.+(t) = +o0o, then the hypervisor
creates a new VM v” to be the migration destination
for the services running in v.

The idea behind selecting the VM giving the least worth
increase percentage to serve as a replacement is to guarantee
that the migrated service will be running in a new environ-
ment that is very similar to that it was running inside (before
migration) in terms of VM’s actual storage, CPU, and mem-
ory states. This is because the worth is an indicator of the cur-
rent hardware, storage, and networking capabilities of the
VM. Such a migration decision would help maintain the per-
formance of the service after the migration process. Along
with the same line, we exclude the VMs that give a negative
worth percentage increase (by assigning them +o0 in Eq. (14)
so that they will never be selected as minimum) because we
do not want the migrated service to run in an environment
that does not satisfy its actual performance needs. On the
other hand, if no VMs satisfying the technical and security
constraints of the migration source v; are available (.e.,
E,,(t) = 0) or no VMs having non-negative worth increase
percentage compared to v; exist (i.e., p,, ., (t) = +00), then
the hypervisor creates a new VM and migrates the services
running inside the risky VM to it.

Note that it would be predictable for attackers to guess
that the services running in a certain VM would be migrated
to another VM having similar hardware configuration as
designed in Eq. (14). However, this is true only if the attack-
ers are made aware that a migration decision is to be taken.
Therefore, the idea of the proposed MTD technique is to
make attackers unaware that the services running inside
(risky) VMs are being migrated. This is achieved through the
honeypot deployment technique discussed in the next sub-
section which keeps a copy of the migrated services running
in the honeypot VMs, while using fake worthless data to
populate these services. This would give attackers the
impression that honeypot VMs are still running real services
and that no migration is being carried out.

5.3 Honeypot Deployment and Machine Learning
In order to learn the probability distributions over the
attackers’ types and inspect their objectives, the hypervisor

Authorized licensed use limited to: Concordia University Library. Downloaded on June 27,2021 at 18:33:10 UTC from IEEE Xplore. Restrictions apply.



WAHAB ET AL.: RESOURCE-AWARE DETECTION AND DEFENSE SYSTEM AGAINST MULTI-TYPE ATTACKS IN THE CLOUD: REPEATED... 615

can exploit the idle VMs by deploying honeypots inside them
to serve as traps for attackers. A honeypot in our case is a
deception VM that is configured by the hypervisor to serve
as a purposed target for attacks. The objective is to give
attackers the impression that they are interacting with a real
system and hence encourage them to freely launch their
attacks in order to gather massive and valuable information.
In this way, any connection with the honeypot would be
deemed to be an attack and all the traffic circulating to the
honeypot is roughly entirely unauthorized. Honeypot sys-
tems can be either of low-interaction or high-interaction [3].
Low-interaction honeypots (e.g., Honeyd) function by emu-
lating services designed to catch some specific malicious
activities (e.g., FTP login), which makes them limited to a
confined level of interaction with attackers. The main advan-
tages of low-interaction honeypots lie in their simplicity to
deploy and maintain and in the minimal risk that they entail
to the system. Practically, low-interaction honeypots do not
allow attackers to have access to the OS, which protects the
cloud system and co-hosted VMs from potential attacks.
Nonetheless, the main disadvantages of low-interaction hon-
eypots are the limited amount of information that they can
capture and their simple configuration that increases the
capability of skillful attackers to detect their presence.

On the other hand, high-interaction honeypots (e.g., Hon-
eynets) consist of real applications and OSs that are designed
for advanced research purposes. Simply speaking, high-
interaction honeypots involve providing a real execution
environment (e.g., a real Windows honeypot system running
a real FIP server) in which nothing is being emulated. The
main advantage of such honeypots is the ability to gather
large amounts of information that enable analyzing and
understanding the complete extent of the attackers” malicious
behavior. Moreover, the fact that high-interaction honeypots
rely on real systems makes them appealing to attackers and
hard to be recognized as being traps. However, the main self-
evident disadvantage of such a type of honeypots lies in the
risks that they might impose on the real system. Therefore, a
thoughtful implementation and configuration of high-inter-
action honeypots is required to block attackers from exploit-
ing these honeypots to hurt other non-honeypot systems.
Such a thoughtful implementation might include, for exam-
ple, isolating the CPU assigned to honeypots from that
assigned to non-honeypot VMs to prevent scheduling tasks
coming from honeypots on the same physical CPU as other
non-honeypot VMs.

Because the aim of our honeypots deployment process is
to study the behavior of the attackers to be able to determine
the probability distributions over their types, we choose to
employ high-interaction honeypots for our problem. The
fact that high-level interaction honeypots make no prede-
fined assumptions on how attackers shall misbehave makes
them able to capture all types of malicious activities includ-
ing unexpected misbehavior. Thus, they are suitable to
study and analyze different types of attacks including
unknown ones. Furthermore, in order to make honeypots
even more appealing for attackers, our honeypot deploy-
ment approach consists of keeping a copy of the (migrated)
services running inside honeypot VMs, while using fake
data to populate them. For example, a banking system that
migrates to another safer VM will keep running inside the

honeypot VM, while using dummy accounts numbers, cli-
ents’ names, etc. Along with the same line, the services run-
ning inside honeypot VMs are changed and updated on a
regular basis to minimize the chances of being discovered
by attackers as traps.

Having collected the necessary data from honeypots, we
need a classification technique to analyze this data and learn
the probability distributions over the attackers’ types. To this
end, we choose to employ the one-class Support Vector
Machine (SVM) [4] which has been proposed as an extension
of the traditional SVM binary classifier. One-class SVMs try
to find the decision boundary (i.e., hyperplane) which sepa-
rates the majority of the data points from the origin. In this
way, the data points that lie on the other side of the decision
boundary will be deemed to be outliers or abnormal activity.
This enables the decision function to classify any new data as
being analogous or different from a certain pattern of data
fed in the training phase (i.e., novelty detection). The selec-
tion of one-class SVM to be used in our problem stems from
three main observations. First, one-class SVM is an unsuper-
vised classification technique which requires no extensive
prior information nor predefined class labels for the ana-
lyzed data. Second, one-class SVM supports multi-class data
classification, which makes it appropriate for our problem in
which we deal with attackers of multiple types. Third, the
fact that one-class SVM is dedicated to novelty detection
makes it well-suited to identify new types of (yet) undetected
attacks. This might be achieved by considering each type of
already identified attacks as a normal activity and determin-
ing the degree of similarity/dissimilarity of each set of new
data w.r.t that normal activity data. Suppose, for example,
that the classification system has already identified DoS and
privilege escalation attacks. If new features that do not match
neither DoS nor privileges escalation attacks’ features are
found on the honeypot system, then this would be consid-
ered as a new attack type targeting the cloud system.

Formally, let z = (z1, 22, ..., x,) denote the feature vector
which contains all the attack features (e.g., source and desti-
nation IP addresses, host names, protocol used, geographi-
cal information of the attack sources, etc.) collected by the
honeypot system. The one-class SVM classification problem
is mapped into solving the following objective function’s
minimization problem:

R T .
min 3 v +%;§nfp

subject to: ; (15)
(w.p(x;)) = p—¢& Vi=1,...,n
& >0 Vi=1,...,n

where 7 is the size of the training set, w represents the normal
vector to the hyperplane, and p is the bias term. Moreover,
¢(.) denotes a transformation function concretized by the ker-
nel function to project the data into a higher dimensional
space and &; € &, are slack variables used to allow some data
points to lie within the margin so as to prevent the SVM clas-
sifier from over-fitting with noisy data. Yet more importantly,
vis the regularisation parameter that determines the shape of
the solution by specifying (1) an upper bound on the fraction
of outliers; and (2) a lower bound on the number of training
tuples employed as support vectors. Thus, an increased value
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of vwidens the soft margin and augments the probability that
the training data will fall outside the normal borders. Prob-
lem (15) can be solved using the Lagrange multipliers method
so that the decision function f(x) becomes:

f(@) = sgnl(w () — p) = sgn(Zaiux, ) - p)7

(16)
where k(z, z;) is the kernel function, which might be either
linear, polynomial, gaussian, or sigmoid, i.e.,

x;.z;, linear
(y.ai.x; + ), polynomial
K(xj,x;) = ’ 2 . . .
exp(—y.|z; — ;| "), gaussian radial basis
tanh(y.z;.x; + ), sigmoid
17

Based on the results obtained from the classification pro-
cess, the hypervisor computes the probability p? for each
attacker’s type y € Y using

, _ Number of observations classified as “‘y”

(18)

Total number of observations

Finally, this information is used back to feed the Bayesian
Stackelberg game (Section 4) with the attackers’ types prob-
ability distributions to help it continuously adjust and opti-
mize the detection load probability distributions over the
set of guest VMs.

6 EXPERIMENTAL RESULTS AND ANALYSIS

We explain in this section the environment employed to per-
form our experiments and present and analyze the experi-
mental results.

6.1 Experimental Setup

To carry out the experiments, we build our own cloud data-
center using CloudSim [31], a cloud simulator that provides
realistic cloud features such as co-hosted VMs, network con-
nections among cloud components, and services migration
support. The decision to create our own cloud rather than
using rented resources from existing providers stems from
two observations [1]. In the first place, most of the cloud pro-
viders (e.g., Amazon EC2) have strict restrictions concerning
any security testing on their resources and infrastructure. In
the second place, cloud providers forbid any direct access of
the users to the VMs’ host system; thus making the acquisi-
tion of performance data and the implementation of new
algorithms at the host’s level far difficult to achieve. The
characteristics of the created cloud are populated from the
Amazon EC2 X-large instances [5] in terms of VMs configu-
rations and pricing scheme. Specifically, the cloud datacenter
is equipped with 100 physical machines; each hosting a num-
ber of VMs varying from 10 to 50. The image size of the VMs
is of 10000 MB, the memory RAM capacity is of 16 GB, and
the hard drive storage is of 976.5625 GB. Each VM is supplied
with a 5-core CPU of 1000 Millions of Instructions Per Second
(MIPS) each. The network bandwidth share of each VM is
50000 Kbit/s. Moreover, Linux has been adopted as an OS in
the datacenter, x86 as a system architecture, and Xen as a Vir-
tual Machine Monitor (VMM). The prices of the VMs, used to

TABLE 10
Attacks Occurrence Distributions on Xen Hypervisors
Attack Occurren-ce on Att.ack
Xen Hypervisors (%) Detection (%)
Co-hosted VMs” Memory Modification 8.5% 92.4468%
Denial of Service 45.8% 91.5871%
Virtual Machine Destruction 13.6% 88.0113%
Virtual Machine Crash 51% 86.6557%
Privileges Escalation 27% 89.6290%

compute the utility functions, have been selected according
to Amazon EC2 pricing scheme.”

To analyze the performance of the attackers’ types recog-
nition phase, we use a dataset [6] from the Data Driven Secu-
rity (DDS) datasets collection. The dataset is collected from
AWS honeypots deployed on several instances across the
world for a period covering March to September 2013 [32].
The dataset records attack data including source and desti-
nation IP addresses, host names, protocol used (e.g., TCP),
source and destination ports, and geographical information
of the attack sources (i.e., country, postal code, longitude,
and latitude). To create the training and test sets, we use the
k-fold cross-validation technique (with k& = 10) whereby the
dataset is split into £ subsets, each used every time as test set
and the remaining k — 1 subsets are combined together to
form the training set. The principal advantage of the k-fold
cross-validation lies in its ability to diminish the bias of the
classification results on the way based on which data is being
divided since each data tuple will be part of the test set
exactly once and part of the training set £ — 1 times.

Finally, to populate the probability distributions over the
attackers’ types (used to achieve the Bayesian property of the
game), we capitalize on the findings presented in [21], which
surveys the attacks/vulnerabilities distributions on Xen
hypervisors (used in our simulations) based on real data col-
lected from NVD [22], SecurityFocus [23], Red Hat’s Bugzilla
[24] and CVEs [25]. These probability distributions are sum-
marized in Table 10. Note that all the experiments have been
conducted in a 64-bit Windows 7 environment on a machine
equipped with an Intel Core i7-4790 CPU 3.60 GHz Processor
and 16 GB RAM.

To show the improvements brought by our solution com-
pared to the state-of-the-art, we compare our work experi-
mentally with five other detection and defense strategies,
namely Collabra [12], probabilistic migration [2], one-stage
Stackelberg [18], maxmin [1], and fair allocation [33]. The
core idea of Collabra [12] is to analyze every hyper-call initi-
ated by each guest application to recognize distributed
attacks that aim to compromise the host hypervisor. In the
fair allocation model, the detection load is distributed in an
equal manner among VMs so as to guarantee the fairness of
the detection process. On the other hand, the maxmin-based
detection load distribution strategy leverages a maxmin
game whose utility functions are mainly fed by the trust
scores computed by the hypervisor toward its guest VMs.
Although the maxmin-based strategy accounts for the
attackers’ strategies and resources constraints in the design
of the problem (as is the case in our solution); it does not

2. http:/ /aws.amazon.com/ec2/pricing/
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performance.

account however for the fact that attackers have the ability to
monitor the cloud system’s strategies and adjust their own
strategies. Similar to our solution, the one-stage Stackelberg
accounts for this challenge by computing the best responses
of the attackers to the hypervisor’s detection load distribu-
tion strategies and incorporating this knowledge into the
hypervisor’s optimization problem. Different from our solu-
tion, the one-stage Stackelberg model abstracts on the types
of attackers and is not able hence to provide the hypervisor
with real-time learning about the actual types and objectives
of the attackers. Our work overcomes this limitation by col-
lecting and analyzing malicious data to learn the probability
distributions over the types of attackers targeting the cloud
system and incorporating this knowledge into the hyper-
visor’s optimization problem to optimize its decisions. More-
over, our solution offers a proactive defense mechanism that
protects services from being successful targets for attackers
and works in a repeated fashion to provide incremental and
continuous learning for the cloud system. Finally, the proba-
bilistic migration defense strategy [2] relies on the idea of
migrating VMs at a certain moment of time based on the
probability according to which those VMs are expected to be
compromised by attackers during the next time moment,
where such a probability is mainly dependent on the attacks’
growth success probability over time.

6.2 Experimental Results

In the first set of experiments (Fig. 2), we test different combi-
nations of the proposed repeated Bayesian Stackelberg game
experimentally to verify the importance of each phase when
used alone and when combined with the other phases. In
Fig. 2a, we measure the attack detection performance while
comparing the cases where (1) all the phases are integrated
into the solution, (2) the risk assessment phase is removed
from the solution, and (3) the MTD defense and honeypot
and machine learning phases are removed from the solution.
By looking at Fig. 2a, we can observe that removing the risk
assessment component results in a considerable degradation
in the detection performance by 20 percent. This decrease
can be justified by the fact that without the risk assessment
strategy, the migration of the services according to the MTD
mechanism would be done in an arbitrary fashion lack of
any knowledge of the risk levels of the VMs. This, in turn,
leads to mostly uninformative data collected by the honey-
pots and analyzed by the machine learning technique. Con-
sequently, the quality of the decisions generated by the
Bayesian Stackelberg game fed by such data would be
decreased. On the other hand, removing the MTD and

honeypot phases from the solution results in a less significant
decrease in the detection performance (compared to remov-
ing the risk assessment phase) as shown in Fig. 2a. The rea-
son is that by removing the MTD and honeypot phases, no
data can be collected and analyzed at all (which is better than
having misleading data). Thus, the performance of the solu-
tion without these two phases converges to that of a one-shot
Stackelberg game which includes no learning component
with regards to the attackers types distributions. Overall, we
can conclude that the risk assessment phase is the most
important phase to optimize the detection performance. On
the other hand, the MTD and honeypot phases have the less
impact on the detection performance.

In Fig. 2b, we assess the performance in terms of percent-
age of survived services, while considering the cases where
(1) all the phases are integrated into the solution, (2) the risk
assessment phase is removed from the solution, (3) the
MTD defense phase is removed from the solution, and (4)
the honeypot and machine learning phase is removed from
the solution. For this experiment, we were able to separate
the MTD phase from the honeypot and machine learning
phase since the MTD-based migration strategy would influ-
ence the percentage of survived services even when used
separately from the honeypot and machine learning phase,
as opposed to the case of attack detection (Fig. 2a) in which
when no migration occurs then no data at all can be ana-
lyzed by the machine learning technique. By examining
Fig. 2b, we notice that removing the MTD phase (case 3)
leads to the poorest performance compared to the other
cases. This result is expected since removing the MTD phase
leads to taking out the proactive (migration) step from the
solution and giving attackers the chance to launch their
attacks. On the other hand, keeping the MTD phase (along
with the risk assessment phase) and removing the honeypot
and machine learning phase (case 4) results in a less painful
decrease in the percentage of survived services, where the
performance of this combination converges to the perfor-
mance of a one-shot Stackelberg game. Finally, removing
the risk assessment phase and keeping the MTD and honey-
pot phases (case 2) would lead to arbitrary migration deci-
sions and hence decrease in the effectiveness of the MTD
technique. Thus, we can conclude that the MTD phase is the
most important phase to increase the percentage of survived
services. On the other hand, the honeypot and machine
learning phase has the least significant impact on this met-
ric. Overall, we can conclude that the honeypot and
machine learning phase, whose removal has the least
impact on both the detection performance and number of
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Fig. 3. Our solution improves the detection performance and is scalable to the increase in the number of co-hosted VMs compared to the one-stage

Stackelberg, maxmin, and fair allocation strategies.

survived services, is rather an optimization phase (that can
be helpful to obtain better decisions) than a mandatory
phase.

Next, we investigate in Fig. 3 the detection performance
metrics (attack detection, false negative, and false positive
percentages) of the four studied solutions. Attack detection
represents the percentage of attacks that the IDS was able to
identify as such. Different from the literature’s definition of
false negative (i.e., the case where the IDS classifies some
activity as benignant when the activity is an actual attack),
we consider in our case that the false negative situation
occurs when there exists an actual attack targeting the VM
but there is no monitoring effort put on that VM to protect it.
Different from the literature’s usual definition of false posi-
tive (i.e., the case where an alarm is raised when there is no
actual attack on a particular resource), we consider in our
case that the false positive situation occurs when there is
some monitoring effort put on a certain VM while this VM is
not being attacked. This metric is of special importance since
it gives a hint on the amount of security resources wasted
during the detection process. By examining Fig. 3, we can
notice that the performance of all the studied solutions begins
to decrease with the increase in the number of co-hosted
VMs. The reason is that increasing the number of VMs on a
single physical machine increases the attack space for attack-
ers by giving them an increased number of VMs to distribute
their attacks over. Moreover, the increase in the number of
co-hosted VMs would lead to reduce the effectiveness of the
security budget since the same budget would need to be dis-
tributed across a larger number of VMs. Thus, the share of
security resources for each single VM is naturally reduced as
the number of VMs grows up. However, we can notice from
Fig. 3 that our solution and Collabra remain far more resilient
to an increased number of co-hosted VMs than the other solu-
tions. The second observation that can be made from Fig. 3 is
that our repeated Bayesian Stackelberg, Collabra, maxmin,
and one-stage Stackelberg models achieve better detection
performance (in terms of attack detection, false negative, and
false positive) compared to the fair allocation strategy. The
reason is that the repeated Bayesian Stackelberg, one-stage
Stackelberg, and maxmin models consider the attackers’ strat-
egies in the formulation of the game, which enables them to
compute the optimal detection load distributions that best
synchronize with the attackers’ strategies. On the other hand,
the fair allocation model seeks to achieve the fairness in the
detection process by distributing the detection load in an
equal manner among VMs; thus overlooking how attackers’
are distributing their attacks. For example, a fair allocation

model which distributes the detection load amongst three
VMs vy, v3, and v3 so that each one receives 33.33 percent
might end up assigning a big part of the security resources
(i.e., 33 percent) monitoring a VM that will not be selected by
attackers to contribute in the attacks. Moreover, the Stackel-
berg-based solutions (i.e., our solution and the one-stage
Stackelberg) outperform the maxmin-based solution since the
former models account for the fact that attackers have the abil-
ity to monitor the hypervisor’s detection load distribution
strategies and they integrate this knowledge into the hyper-
visor’s optimization problem to optimize its detection strate-
gies. Our repeated Bayesian Stackelberg solution, in its turn,
performs better than the one-stage Stackelberg because it
includes a learning component that learns the types and objec-
tives of the attackers and incorporates this knowledge into the
hypervisor’s optimization problem. This increases the aware-
ness of the hypervisor about the nature and gravity of the
attacks that are expected to be launched on every VM and
aids it hence to adjust the detection load distributions accord-
ingly. Finally, our repeated Bayesian Stackelberg game and
Collabra achieve very close detection performance results in
terms of attack detection and false negative percentages since
Collabra monitors every activity of the VMs, which allows it
to achieve high detection performance that is similar to that of
our solution. However, unlike our solution in which the false
positive percentage is negligible, Collabra entails high percen-
tages of false positives up to 45 percent (Figs. 3c and 4c), thus
causing a significant wastage of resources. The reason is that
Collabra monitors all of the VMs’ activities whether or not
these VMs are launching attacks, which leads to large and
unnecessary squandering of resources since usually most of
the times the VMs are not supposed to launch attacks. It is
worth mentioning that we characterize the attack detection
metric in a more detailed way in Table 10 by showing the
detection rate specific to each of the six considered attacks,
where the results depicted in Fig. 3a represent the average
detection over all attack types.

In Fig. 4, we study the scalability of our solution with
respect to the variation in the percentage of co-resident mali-
cious VMs. To do so, we vary the percentage of attacking VMs
co-residing on a single cloud system from 10 percent up to
80 percent to explore the effects of this variation on the perfor-
mance of the studied solutions. As shown in Fig. 4, the perfor-
mance of all the solutions begins to decrease with the increase
in the percentage of attacking VMs. This unsurprising result
is due to the fact that the bigger the number of VMs attacking
the system is, the less is the ability of the cloud system to cap-
ture attacks under the limited budget of security resources.
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Thus, a possible choice for the cloud system’s administrators
would be to increase the security budget to face an increased
number of attacks. Specifically, our attackers’ types recogni-
tion phase can aid the cloud’s administrators in deciding
whether there is a need to increase the security resources bud-
get or not by giving them detailed information about the vol-
ume and nature of attacks targeting the cloud system.
Fortunately, our solution (along with Collabra) shows a better
scalability to an increased percentage of attacking VMs
compared to the other models even in extreme cases (i.e.,
80 percent of co-resident malicious VMs) thanks to the previ-
ously discussed advantages brought by our solution.

In Fig. 5, we study the effectiveness and efficiency of our
MTD-based defense mechanism and machine learning tech-
nique by measuring the percentage of survived services, and
the training and classification times. In Fig. 5a, we measure
the percentage of survived services which represents the per-
centage of services that remained unattacked during their
whole lifetime. In this Fig., the probabilistic migration [2]
(described in Section 6.1) is added to the comparisons. We
notice from Fig. 5a that our solution is able to increase the
number of survived services compared to the other solutions.
This is thanks to the proactive defense mechanism that our
solution advances and that migrates the services running
inside risky VMs to other more secure VMs to protect them
from being successful targets for attacks. The absence of such
a mechanism in the Collabra, one-stage Stackelberg, maxmin,
and fair allocation solutions limits their effectiveness to some
reactive measures (i.e., detection) and hence leads to an
increased number of attacked services. Besides, our work
outperforms the probabilistic migration defense strategy [2]
since we provide a comprehensive risk assessment frame-
work which takes into consideration not only the attack
growth success probability (considered in [2]), but also the
potential vulnerabilities of the VMs, their expected threats, as
well as their past attack history when deciding on whether to
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Our solution maximizes the percentage of survived services and entails acceptable training and classification times.

migrate services or not. Fig. 5b shows the time required to
train the one-class SVM on various training datasets sizes. To
do so, we employ the DDS honeypot data collected from
AWSs and whose original size amounts to 650,000 rows. To
study the impact of the training dataset’s size on the training
time, we vary the size of the data from 10,000 to 650,000.
Unsurprisingly, Fig. 5b reveals that the training time
increases with the increase in the size of the training dataset
and reaches at the extreme case (i.e., 650,000 rows) 330s. The
main time complexity lies in the process of constructing an
SVM model for each class label. Practically, since we have 6
types of attackers (Table 1) serving as class labels for the train-
ing dataset, we have to build one SVM model for each single
class and train it to differentiate the samples of that class
from the samples of all remaining classes (i.e., novelty detec-
tion). We argue that the obtained time is insignificant, espe-
cially since this phase is executed offline and not required to
be repeated at each time moment as discussed in Section 5.
Having completed the training process, the next step is to
execute the actual classification part, which consists of assign-
ing an attack type for each particular sample. Since the classi-
fication time is also dependent on the dataset’s size as is the
case for the training time, we test the classification’s time on
different dataset sizes. It can be noticed from Fig. 5c that the
classification time is negligible in all the considered cases,
where it does take 0.4s to classify samples in a dataset consist-
ing of 650,000 rows.

Finally, we study in Fig. 6 the execution time, CPU utili-
zation, and memory utilization of the considered solutions.
By examining Fig. 6a, we notice that the fair allocation
approach yields the fastest performance. This is because the
detection load is to be distributed equally across VMs,
which removes the time complexity of finding the optimal
detection load probability distributions. On the other hand,
Collabra gives the (largely) slowest performance and the
poorest scalability to the increase in the number of VMs
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Fig. 6. Our solution is efficient in terms of execution time, CPU utilization, and memory utilization compared to Collabra, one-stage Stackelberg,

maxmin, and fair allocation strategies

owing to the fact that it requires analyzing all of the VMs’
activities. The one-Stackelberg performs faster than the max-
min-based and our repeated Bayesian Stackelberg game. The
time difference between the one-stage Stackelberg and max-
min models may be thought of as the time needed by the lat-
ter to gather objective and subjective sources of trust and
compute the final trust values prior to executing the maxmin
game. On the other hand, the time difference between our
repeated Stackelberg model and the one-stage Stackelberg
and maxmin-based models lies in the time taken by our solu-
tion to perform the VMs’ risk assessment as well as the
computational time entailed by the integration of the
attackers’ type into the optimization problem. Though, our
solution still performs in an efficient manner, where it takes
~ 5.6s to run in a cloud system consisting of 50 co-hosted
VMs. We can also notice that the time complexity of our solu-
tion grows polynomially with the increase in the number of
VMs, which boosts its scalability in large-scale datacenters.
We compare in Figs. 6b and 6c the resource consumption
entailed by the different considered solutions. We can notice
from Figs. 6b and 6c that the fair allocation model records the
least CPU and memory utilization since it involves no heavy
computation and storage duties. Moreover, our solution, the
one-stage Stackelberg, and maxmin models can considerably
decrease the CPU consumption by ~ 15% (Fig. 6b) and mem-
ory consumption by ~ 25% (Fig. 6¢) compared to Collabra.
The reason is that in Collabra, the hypervisor has to check
every incoming call, store it in the memory, and analyze it in
order to detect intrusions, which entails high computational
and storage overhead. In contrary, in the other three solu-
tions, the detection is done in a selective manner so that the
hypervisor doesn’t have to monitor all the activities of the
VMs. Another important remark to be drawn from Figs. 6b
and 6c¢ is that our solution, the one-stage Stackelberg, max-
min, and fair allocation are quite more scalable than Collabra
to the increase in the number of co-hosted VMs. The reason
is that in Collabra, as the number of VMs grows up, the num-
ber of calls to be stored and analyzed by the hypervisor
becomes quite greater, which would entail considerable
overhead in large-scale cloud systems.

7 DISCUSSION

In this Section, we provide an in-depth discussion on the
originality of our solution compared to the state-of-the-art
and shed light on the technical challenges of the different
steps of our approach. Starting with the game model, it is
true that Bayesian Stackelberg games have already been

used in the literature to solve security-oriented problems.
For example, a Bayesian Stackelberg game has been pro-
posed in [34] to protect Los Angeles airport against multi-
type attacks (e.g., thieves, terrorists). In [15], a Bayesian
Stackelberg game has been designed to help Web application
administrators chose thoughtful defense strategies to deal
with attackers of different types. However, the main limita-
tions of these approaches is that they assume that the
attacker types” probability distributions are known a priori,
which is not realistic in practice. In this work, we propose a
practical and effective data-driven optimization methodol-
ogy which employs techniques from several disciplines (i.e.,
risk assessment, MTD, and machine learning) to learn these
probabilities and then integrate them into the Bayesian
Stackelberg game. Such a data-driven learning methodology
provides an effective means for determining the distribution
of the attacker types that target a certain cloud system. More-
over, this approach is novel in this field and opens the door
for further data-driven optimization solutions in the domain
of cybersecurity. Besides, the design of the utility functions
in our case is a serious challenge. In fact, the utility functions
should be designed while taking into account several factors
such as the values of VMs being targeted/protected, type
and impact of attacks being launched, effectiveness of moni-
toring/attack processes, and attack/monitoring costs.
Moving to the MTD technique, it is true that many MTD-
based approaches have been proposed to protect assets from
being successful targets for attackers. However, adopting it in
a cloud environment involves many technical challenges. Spe-
cifically, unlike the case of physical security systems where
moving checkpoints and patrols across many locations only
involves security concerns (i.e., making sure that the new
location is safe), migrating services from one VM to another
should maintain some technical compatibilities between the
migration source and destination. For example, the Operating
Systems (OSs) of the source and destination VMs have to be
consistent since migration between distinct OSs (e.g., Win-
dows and Linux) might entail some technical complications
and unanticipated technological roadblocks. To tackle this
challenge, we devise in this work a migration strategy which
takes into account both the security and technical aspects in
the migration process through intelligently choosing the
migration destinations to be the ones that maximize the secu-
rity and minimize differences in terms of hardware, network,
and storage characteristics w.r.t the migration source.
Concerning honeypots, apart from the traditional hon-
eypot deployment techniques, deploying honeypots in
the cloud entails many advantages and challenges. On the
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one hand, the cloud computing architecture facilitates the
deployment of honeypots through offering businesses com-
plete isolation from their production network. Moreover, the
use of the cloud eliminates the need for purchasing specific
hardware or dedicated Internet connections. That is, once a
honeypot machine has been compromised and the data is
gathered, a snaposhot might be employed to revert the sys-
tem back to its captured state prior to the happening of the
attack. On the other hand, the use of honeypots in the cloud
imposes legal and policy implications for cloud providers. In
particular, some providers feel reluctant to direct hackers to
their networks and/or to collect malware data within their
infrastructure. This in fact could lead to harm their reputa-
tion (hosting the compromised system) and even to block
their IP ranges and domains, thus impacting their market
shares. Therefore, designing a honeypot solution in a cloud
environment should be done in careful manner.

8 CONCLUSION

This paper proposes a comprehensive detection and defense
mechanism for cloud-based systems that consists of the fol-
lowing phases: (1) risk assessment framework that evaluates
the risk level of each guest VM; (2) MTD-based defense mech-
anism that intelligently migrates services running inside risky
VMs to other more secure VMs; (3) machine learning tech-
nique that recognizes the types of attackers using honeypot
data; and (4) resource-aware Bayesian Stackelberg game that
aids the hypervisor in determining the optimal detection load
distribution strategy among VMs. Experiments conducted
using Amazon’s datacenter and AWSs honeypot data reveal
that our solution improves the detection performance up to
~ 7% and minimizes the percentage of attacked services
by ~ 15% compared to the state-of-the-art detection and
defense strategies, namely Collabra, probabilistic migration,
maxmin, one-stage Stackelberg, and fair allocation. As for
the efficiency, the experimental results show that As for the
efficiency, the experimental results show that our machine
learning technique needs =~ 330s to train in a dataset compris-
ing 65,000 rows and consisting of six types of attackers.
Finally, our detection load distribution strategy takes ~ 5.6s
torun in a cloud system of 50 co-hosted VMs and grows poly-
nomially with the increase in the number of co-hosted VMs.
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