
IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021 829

Ad Hoc Vehicular Fog Enabling Cooperative
Low-Latency Intrusion Detection

Azzam Mourad , Senior Member, IEEE, Hanine Tout , Omar Abdel Wahab, Hadi Otrok, Senior Member, IEEE,
and Toufic Dbouk

Abstract—Internet of Vehicles and vehicular networks have
been compelling targets for malicious security attacks where
several intrusion detection solutions have been proposed for pro-
tecting them. Nonetheless, their main problem lies in their heavy
computation, which makes them unsuitable for next-generation
artificial intelligence-powered self-driving vehicles whose com-
putational power needs to be primarily reserved for real-time
driving decisions. To address this challenge, several approaches
have been lately presented to take advantage of the cloud com-
puting for offloading intrusion detection tasks to central cloud
servers, thus reducing storage and processing costs on vehicles.
However, centralized cloud computing entails high latency on
intrusion detection related data transmission and plays against
its adoption in delay-critical intelligent applications. In this con-
text, this article proposes a vehicular-edge computing (VEC)
fog-enabled scheme allowing offloading intrusion detection tasks
to federated vehicle nodes located within nearby formed ad
hoc vehicular fog to be cooperatively executed with minimal
latency. The problem has been formulated as a multiobjective
optimization model and solved using a genetic algorithm max-
imizing offloading survivability in the presence of high mobil-
ity and minimizing computation execution time and energy
consumption. Experiments performed on resource-constrained
devices within actual ad hoc fog environment illustrate that our
solution significantly reduces the execution time of the detec-
tion process while maximizing the offloading survivability under
different real-life scenarios.

Index Terms—Ad hoc vehicular fog, cooperative intru-
sion detection, federated vehicles, Internet of Things (IoT),
Internet of Vehicles (IoV), mobile-edge computing (MEC),
multiobjective optimization, security, offloading, resource man-
agement, vehicular-edge computing (VEC), vehicular fog
federation.

I. INTRODUCTION

INTERNET of Vehicles (IoV), an essential paradigm of
the Internet of Things (IoT) [1] related to intelligent

Manuscript received April 13, 2020; revised June 17, 2020; accepted
June 30, 2020. Date of publication July 10, 2020; date of current version
January 7, 2021. This work was supported in part by the Lebanese American
University, in part by Universite du Quebec en Outaouais, and in part by
Khalifa University. (Corresponding author: Azzam Mourad.)

Azzam Mourad and Hanine Tout are with the Department of Computer
Science and Mathematics, Lebanese American University, Beirut 961,
Lebanon (e-mail: azzam.mourad@lau.edu.lb; hanintout@hotmail.com).

Omar Abdel Wahab is with the Department of Computer Science and
Engineering, Université du Quebec en Outaouais, Gatineau, QC 8Y 3G5,
Canada (e-mail: omar.abdulwahab@uqo.ca).

Hadi Otrok is with the Center of Cyber-Physical Systems, Department of
EECS, Khalifa University, Abu Dhabi, UAE (e-mail: hadi.otrok@ku.ac.ae).

Toufic Dbouk is with Samsung Electronics America, Ridgefield Park, NJ
07660 USA (e-mail: toufic.dbouk@gmail.com).

Digital Object Identifier 10.1109/JIOT.2020.3008488

transportation systems (ITS), are networks of interconnected
vehicles and roadside units (RSUs) that exchange information
to detect, prevent, and manage traffic problems [2]. For exam-
ple, vehicles can exchange information about road conditions
in order to avoid traffic jams. Due to their expansion, several
commercial applications (e.g., multimedia and infotainment)
have also been integrated into such networks for marketing
and business purposes. Unfortunately, vehicular networks have
been an appealing target for countless malicious attacks (e.g.,
impersonation and bogus information dissemination) due to
their infrastructureless and distributed nature [3]. Such attacks
are likely to result in catastrophic consequences ranging from
loss of lives (in case of traffic management applications) to
loss of revenue (in case of commercial applications) [4]. This
demands setting up strict security measures (i.e., intrusion
detection and prevention systems) to protect the vehicular
network from being an easy target for attackers. This is how-
ever a difficult task in such networks that have special restric-
tions and needs. The main restriction is related to the massive
computation load that is often needed for analyzing big intru-
sion detection data. For example, previous results showed that
running an intrusion detection system (IDS) over a data set of
10-MB size can consume up to 212 J of energy, up to 100 MB
of RAM and up to 460 s of CPU on a mobile device, with an
execution time of 459 s [5]. On the other hand, with the rapid
evolution in ITS and the integration of artificial intelligence
(AI) capabilities into today’s smart devices (i.e., autonomous
vehicles), the resources that are available on smart vehi-
cles have to be efficiently exploited to ensure the success of
such technology and avoid undesirable consequences. In other
words, the resources that are available on AI-powered vehi-
cles should be primarily dedicated to making real-time driving
decisions (e.g., detecting pedestrians, cyclists, etc.), rather than
to security assurance. Therefore, there should be a smart load
distribution mechanism to efficiently decide where the intru-
sion detection tasks should be executed. Motivated by this
idea, we design in this work a distributed multilayer offloading
approach that takes advantage of the emerging edge computing
technology to perform intrusion detection in vehicular commu-
nication systems in an efficient and resource-aware manner.

A. Problem Statement

Several approaches [6]–[10] have proposed to take advan-
tage of the cloud computing technology to deal with the
resource restrictions on smart devices (e.g., vehicles and

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 07:20:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9434-5322
https://orcid.org/0000-0001-8018-8709

830 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

mobiles), using the concept of offloading. Offloading con-
sists of migrating intensive computations from a resource-
constrained device to some external platforms (i.e., cloud
data centers) that are characterized by their massive com-
puting and storage capacities. However, the performance of
this approach is hindered by the centralized architecture of
cloud computing, which entails long latency for data trans-
mission from/to cloud data centers. This makes it difficult to
keep up with the Quality-of-Service (QoS) requirements of the
delay-sensitive applications, such as healthcare management,
connected vehicles, and video streaming. These challenges had
led to the rise of a new architecture called mobile-edge com-
puting (MEC) [11] whose main idea is to deploy computing
and storage resources at the edge of the network, thus con-
siderably reducing the latency of computing services. Vehicles
promise to contribute in boosting the rebound of edge intelli-
gence, thanks to the unprecedented proliferation in the number
of connected vehicles and amounts of computing and stor-
age resources available on them. This pushed the research
community to design several solutions [12]–[14] to address
the problem of offloading in MEC cloud-enabled vehicular
networks. These contributions seek mainly to allow users (i.e.,
vehicles and pedestrians) to offload their computation tasks
to other vehicles, that might exploit their excess of com-
puting resources to serve them, or to fog resources placed
at the edge [15]–[17]. Despite their importance, to the best
of our knowledge, none of these approaches has yet consid-
ered the offloading of security services in the MEC fog-based
vehicular environment within IoT and IoV. To fill in this
gap, we propose in this work ad hoc fog within vehicular
federation approach for efficient intrusion detection which gen-
erates optimal offloading decisions that minimizes the energy
consumption and execution time and maximize the clustered
fog survivability, while considering the mobility and available
resources of the vehicles in the design of the solution. The sec-
ond limitation of the existing approaches is that they demand
Internet connection and preset infrastructure to carry out the
offloading process. Unlike these approaches, our solution takes
advantage of the Wi-Fi direct technology to alleviate these
burdens and reduce the offloading cost for users within the
infrastructureless environment.

B. Contributions

The propositions in this work target security services in gen-
eral, and can be extended to more general problems requiring
critical computation and low-latency tasks. In this work, we
focus on IDSs due to their complexity and the computation
overhead that they put on vehicles. We then propose a novel
vehicular-edge computing (VEC) fog-enabled scheme within
IoV formed among nearby federated vehicles while providing
sustainable and cooperative intrusion-detection service through
intelligent and efficient multilayer computation offloading. Our
approach consists of three main components within the fed-
eration of vehicles: 1) master node; 2) requesting node; and
3) serving node. The master node is considered to be the owner
of the fog within a specific Wi-Fi direct group and is hence
responsible for carrying out the communications among the

different nodes within its cluster. Once the requesting node
sends an offloading request to the master, the latter runs the
vehicular intelligent offloading distributor (VIOD) module to
decide on whether the security scanning task should be done
locally or in a remote fashion (i.e., offloaded). To come up with
such a decision, the VIOD analyzes several parameters gath-
ered from the requesting node and the other vehicles in the
cluster using profiler and Fog Observer agents. Specifically,
the profiler agent collects parameters, such as size of data to be
offloaded, number of nodes that exist in the underlying vehic-
ular fog, status of each node (i.e., idle and moderate critical),
battery level of the vehicle, and CPU and energy consumption
on each of these vehicles.

On the other hand, the Fog Observer is in charge of
collecting mobility-related data from vehicles, such as geo-
coordinates, speed, and distance. More specifically, this agent
periodically computes each vehicle’s distance with respect to
the master node using the vehicle’s geo-coordinates [obtained
using the global positioning system (GPS)] to determine the
time needed for the vehicle to get out of the master’s network
range [i.e., out-of-range (ORT) metric]. This enables the mas-
ter to compare the ORT of each vehicle with the expected
execution time of the underlying task to rule out those vehi-
cles that are likely to leave the cluster’s range area before
completing the task. This step is of prime importance since it
contributes in both: 1) reducing the overhead of the offload-
ing algorithm by excluding the set of ineligible vehicles and
2) improving the overall QoS of the intrusion detection pro-
cess through guaranteeing that task executors will not leave
the network prior to finishing the execution of their tasks.

In fact, vehicles often change their speed based on road con-
ditions, such as driving in cities, on highways, or even from
one street to another. This variation affects the structure of
the ad hoc fog as some vehicles participating in the federa-
tion might get out of their cluster’s communication range. To
better illustrate this idea, consider a vehicle driving with high
speed at the time of taking an offloading decision. This vehicle
is selected to perform a part of the intrusion detection task and
is expected to complete its assigned task. However, it might
not be able to complete its task since it might get out of the
master node’s range before finishing execution. As a result, the
efficiency and reliability of our framework is compromised. In
such cases, the framework should be able to decide on offload-
ing to nodes that are guaranteed to completely execute their
tasks within the time limit to meet with the needed QoS level.
In another scenario, assume that a node requested to offload
in the VEC network and that serving nodes are ready to uti-
lize their resources to carry out the intrusion detection task.
However, by the time the serving nodes finish the execution of
their assigned tasks, the requesting node had already exited the
master node’s range. As a result, the VEC ad hoc fog resources
were consumed without gaining any benefits. In such cases,
the offloading decision should be denied saving and avoiding
waste of resources. Our proposed framework uses vehicles’
speed and distance among them to calculate the time needed
for each node to get out of the master node’s communication
range. It also finds the maximum number of chunks that a node
can serve before it exits the vehicular fog. More specifically,

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 07:20:19 UTC from IEEE Xplore. Restrictions apply.

MOURAD et al.: AD HOC VEHICULAR FOG ENABLING COOPERATIVE LOW-LATENCY INTRUSION DETECTION 831

the framework focuses on the offloading survivability of the
fog. The survivability aspect plays an important role in deter-
mining whether the underlying vehicular fog guarantees the
execution of the offloading decisions taken. We consider the
offloading survivability of the vehicular fog as its ability to
offload all tasks to the serving nodes and sends the result back
to the requester node before any of the involved nodes gets
out of the cluster’s range and at the same time, before the
requesting node exits the network’s range.

By analyzing all these collected parameters, the VIOD then
decides on whether offloading the intrusion detection task
would improve the overall performance of the process or not.
If an offloading decision is adopted, the VIOD computes, using
the NSGAII genetic algorithm [18], the appropriate distribu-
tion of the intrusion detection data over the set of eligible
federated vehicles in such a way to minimize energy and
execution time, and maximize ORT. In summary, the main
contributions of this work are listed as follows.

1) Elaborating a novel ad hoc vehicular fog scheme com-
posed of federated vehicles enabling cooperative security
and intrusion detection services that capitalize on the
Wi-Fi direct technology to provide vehicles with an
Internet-independent offloading strategy. To the best of
our knowledge, this work is the first that provides
intrusion-detection service in an ad hoc fog within vehic-
ular federation built from participating vehicles, while
eliminating the need to rely on Internet connection or
any other preset infrastructure. Our solution is designed
in such a way to be independent from the availability
and quality of the Internet connection, without entailing
any additional charges for users.

2) Formulating the intrusion detection task offloading
problem as a multiobjective optimization model which
takes into consideration performance improvement and
maximization of offloading survivability time. The
optimization problem is solved using a genetic algo-
rithm that relies on statistical mobility and resource data
collected from vehicles to generate offloading solutions
that minimize execution time and improve the QoS of
the cooperative distributed intrusion detection process.
Moreover, our experiments were performed on resource-
constrained devices reflecting actual ad hoc vehicular
fog federation while considering real-life factors, such
as high-mobility, survivability of the formed cluster of
vehicles, and different scenarios of available resources.

C. Organization

The remainder of this article is organized as follows. In
Sections II and III, we present an architectural overview of our
solution and explain the different components and modules.
In Sections IV and V, we formulate the distributed offloading
problem as a multiobjective optimization model and propose
an NSGAII genetic approach to solve it in an efficient manner.
In Section VI, we provide thorough experimental evaluations
of our solution under different scenarios and parameters. In
Section VII, we provide a security analysis and highlight some
challenges for potential solutions. In Section VIII, we survey

Fig. 1. Ad hoc vehicular fog architecture composed of federated vehicles.

the related work and highlight the originality of our solution.
Finally, in Section IX, we conclude this article and summarize
the main insights driven from our work.

II. SCHEME OVERVIEW

This section describes, in a nutshell, our proposition illus-
trated in Fig. 1. The proposed approach is capable of creating
an ad hoc vehicular fog and intelligently offloading requests
between nodes in a vehicular federation. In the figure, we
differentiate between five types of vehicles. The yellow one
resembles a Requesting Node, the green one resembles the
Master Node, and blue ones resemble Serving Nodes. Red
vehicles resemble Serving Nodes within the ad hoc vehicu-
lar fog, which are excluded from the intelligent offloading
decision. Therefore, even though they are part of the fog fed-
eration and close to the Master Node, they are being discarded
by the Intelligent Offloading Distributor module since they
are not able to satisfy the vehicular constraints. One reason
behind excluding them could be their relatively high moving
speed compared to other nodes which leads to going out of the
network range before finishing executing their assigned tasks.
This critical criterion is made available to the Master Node via
the Fog Observer module. Finally, black vehicles show vehi-
cles that are outside of the ad hoc vehicular fog federation
and not being used in the offloading decision.

Our approach creates an ad hoc vehicular fog through Wi-Fi
direct in order to build a dynamic environment of federated
vehicles for sharing resources, creating cooperation opportuni-
ties, and offloading between different nodes in order to provide
efficient and reliable IDS. While different nodes are involved
in each offloading process, each of which runs several mod-
ules that differ based on the node type. The communication
between a requester and serving nodes is established through
the Master, which is considered in this work as the group
owner (GO) of the created ad hoc vehicular fog. A secondary
Master node is also considered in the proposed architecture in

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 07:20:19 UTC from IEEE Xplore. Restrictions apply.

832 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

Fig. 2. Vehicular node modules.

order to replace the main one in case failure. A Requesting
Node is a node in the ad hoc vehicular fog that requests
offloading the execution of a task. It is the responsibility of
the Master node then to evaluate whether offloading augments
the performance of the requesting node or not. In the latter
case, the requesting node executes the task locally. An ad hoc
vehicular fog manager, profiler, communication manager, and
intrusion detection engine, are all modules that run inside a
node in order to handle the communications, offload the tasks,
and execute the detection process. A Master Node is the GO of
a particular Wi-Fi direct group, responsible of managing the ad
hoc vehicular fog federation as well as handling the offloading
requests. Based on several metrics, which are further explained
in this article, the Master finds the nodes which are more
suitable to handle the offloading requests. Additionally, it com-
municates data between the nodes in the ad hoc vehicular
fog. Besides the modules of a requesting node, the Master
includes a VIOD, Offloading and Distribution Controller and
a Fog Observer, which are all detailed in the following sec-
tion. Finally, a Serving Node is a surrogate node in the ad hoc
vehicular fog that answers an offloading request to the Master
node and on behalf of the Requesting one. The serving node
performs the required task and communicates the results back
to the master node. It runs the same modules as a requesting
node.

III. Ad Hoc VEHICULAR FOG

This section details each module of the federated vehicles
involved in the ad hoc vehicular fog as illustrated in Fig. 2,
in addition to the interaction among them. An algorithm for
the Election of Master Nodes is proposed, which is inspired
by our previous work published in [19]. The main component
of this algorithm is a multicriteria QoS function described as
follows:

QoS(i) = w1× BW(i)w2× N(i)w3× DistRatio(i)/w4

× VelRatio(i). (1)

This function consists of several metrics, such as bandwidth,
connectivity, velocity, and residual distance. The bandwidth is
considered to ensure the reliability of the vehicular network,
the connectivity is considered to increase the coverage of the
elected master nodes, while the velocity and residual distance
are considered to maintain the stability of the network and

minimize the chances of link failures caused by the elected
master nodes. In our algorithm, vehicles periodically broad-
cast HELLO messages [19], which contain information on
their QoS metrics (i.e., bandwidth, connectivity, velocity, and
residual distance). Based on this information, each vehicle par-
ticipates in two election processes, one for a primary master
node and one for a secondary master node. To select the pri-
mary master node, vehicles compute the above-described QoS
function while giving equal weights for the different metrics
(i.e., w1=w2=w3=w4). Each vehicle then votes for the vehi-
cle that enjoys the local maximal QoS value. To select the
secondary master node, vehicles compute the QoS function
while this time giving more weights for the mobility metrics
(i.e., velocity and residual distance). The idea is to increase
the probability of having the secondary master node longer
in the underlying cluster in case the primary head discon-
nects. Again, each vehicle votes for the vehicle that enjoys
the local maximal QoS value. In case the same vehicle enjoys
the maximal QoS value in both election processes, then nodes
vote for the vehicle that has the second local maximal QoS
to be the secondary master. A vehicle is also entitled to vote
for itself, provided that it has the local maximal QoS value.
The vehicles employ special HELLO messages, called Election
messages, to locally broadcast their votes. Once the elections
are completed, the primary and secondary elected vehicles
acknowledge to serve as a master nodes through forwarding an
Ack message. A cheating prevention mechanism, which moti-
vates vehicles to reveal their true QoS metrics is also described
in [19].

Based on the type of the node on which the fog manager is
running, it will act from different perspective. When running
on the Master node, this module forms and monitors a vehic-
ular fog within a certain range. It handles requests from nodes
willing to join the fog and keeps track of each connected node
status. The profile of each node is communicated with the fog
manager, dynamically and frequently updated, in order to serve
in the offloading decision process. Following a discovery phase
in which the manager looks for a GO/Master node to join the
cluster, a connection is established with the latter to commu-
nicate the nodes profiles (created by the Profiler module) with
the fog manager. The latter further takes the responsibility
of handling the connection (reconnect/disconnect) in case of
failures. The Profiler in this work is a service running as a
separate process that uses a native code to access the kernel’s
information center and capture runtime system information of
a node. It collects energy consumption and monitors execu-
tion time. Such data get updated regularly and can be requested
on-demand basis. Based on the gathered information, the pro-
filer classifies each node in the ad hoc vehicular fog as Idle,
Moderate, or Critical. The Communication Manager is a data
socket layer that identifies a set of protocols defining and
abstracting the communication based on each node’s require-
ments. According to the node’s type and the operation to be
performed, the communication manager arbitrates either a P2P
or a client–server communication mechanism. Furthermore, it
communicates traces between the requester and ad hoc fog
manager module and the offloading distribution controller of
the master node.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 07:20:19 UTC from IEEE Xplore. Restrictions apply.

MOURAD et al.: AD HOC VEHICULAR FOG ENABLING COOPERATIVE LOW-LATENCY INTRUSION DETECTION 833

The intrusion detection engine can be developed either
based on signatures that are matched with a predefined
malicious behavior data set or through anomaly detec-
tion. In the former case, a variety of algorithms can be
used; like Aho–Corasick, Low Memory Keyword Trie, and
Wu–Manber, which are currently implemented by snort pat-
tern matcher [20]. As for the latter case, genetic algorithms
and data mining techniques can be used to build such engines
which takes a baseline of normal behavior and detect devi-
ations, notifying when a threshold is crossed. The proposed
architecture is applicable for any of these IDSs. Yet, in this
specific work, a signature-based intrusion detection engine is
built on top of the Aho–Corasick algorithm, which matches
system calls gathered in real time against a predefined data
set. To accelerate the traversals and searching process, finite
state machine (FSM) of transitions and failure links between
internal nodes is leveraged. Working on a predefined data set,
the algorithm moves linearly with respect to the input length
and number of matched patterns. The constructed FSM is used
for pattern matching in a background thread running on the
participating node. When a local execution is advised by the
Intelligent Offloading Distributor, the detection engine scans
data on the node in which it is running and takes action accord-
ingly like raising alerts or blocking execution. However, in
case an offloading decision is taken, the engine scans the data
sent by the Requester node through the Master and sends the
results back to the latter through the Communication Manager.
Participating nodes are not tied by the same detection engine,
but rather different engines/versions can run on each node to
improve the detection rate.

The Fog Observer is a crucial module developed as a ser-
vice and runs on the Master Node. It allows the Master Node
to calculate and save its speed, in addition to keeping a con-
tinuous record of the time needed for each node to get out of
its network range (ORT). In order to obtain this ORT factor,
the module calculates various metrics for each node. The first
metric is the node’s geo-coordinates which are calculated via
the underlying platform’s GPS and network provider. The sec-
ond metric is the distance between the node and the Master
Node which is calculated via the obtained geo-coordinates.
The third metric is the speed of the node which is calculated
using the above two metrics. Finally, the Master Node obtains
and saves the ORT for each node in the ad hoc vehicular fog.
The data is updated periodically by the fog manager and other
modules can request on-demand updates. The VIOD module
is in charge of intelligently deciding whether offloading aug-
ments the performance of the Requesting Node or not. The
distributor incorporates several criteria from the ad hoc vehic-
ular fog in order to obtain a decision. The profiler provides
the following information: 1) size of the data to be offloaded;
2) the number of cluster nodes; 3) status of each cluster node
(idle and moderate critical); 4) battery level on each node; and
5) their CPU and energy consumption. Moreover, the module
requests additional information for each node represented by
its out-of-range time (ORT). The Fog Observer supplies the
module with the time needed for each node to get out of the
Master Node’s network range. As such, it is capable of deter-
mining the ORT of the Requester Node and checking whether

the node’s assigned chunks are within the requester’s ORT. It
is also capable of excluding nodes that are unable to satisfy
the Vehicular constraints. As a result, the module now has
a complete view of the ad hoc vehicular fog enabling it to
obtain a smart offloading decision in a vehicular environment.
If an offloading decision is taken, the module then requires
the Requester Node to send the data for distributing it based
on the taken decision.

The Offloading and Distribution Controller module runs on
Master nodes only. It is responsible for distributing the data on
selected nodes in the vehicular fog beside gathering and com-
municating the results among them. It is implemented as a
service that receives the decision of the Intelligent Offloading
Distributor and disseminates it accordingly. It runs as a back-
ground thread for each Serving node dividing data into equal
segments over available nodes in the formed vehicular fog. If
equal segmentation is not feasible, the last segment is left to
be larger than the rest. Each thread holds the responsibility
of data transmission in cooperation with the Communication
Manager and reliably to the node. For higher computation effi-
ciency, parallelism is applied for data distribution. Detailed
information regarding the scanning process duration, num-
ber of malicious items, and the items themselves are also
communicated with the Distribution Service, which sends the
result back to the Requester node through the Communication
Manager. In case of failures in threads or nodes, the Master
triggers the Requester node for recovery.

IV. OPTIMIZATION MODEL AND PROBLEM FORMULATION

In this section, we explain our multiobjective optimization
problem and prove that it is NP-hard by reduction to
the multiobjective multidimensional Knapsack (MOMKP)
problem. Existing intrusion detection solutions impose heavy
computations on smart devices (i.e., autonomous vehicles),
which makes them unsuitable for next-generation AI-powered
vehicles as computational power should rather be primar-
ily reserved for making real-time driving decisions. Hence,
the need for an offloading-based solution where some scan-
ning tasks are offloaded to be executed remotely. Consider
a smart device D(C, N) where C represents the size of data
to be scanned by D, and N represents a set of connected
nearby nodes forming an ad hoc vehicular fog such that
N1+N2+· · ·+Nj = N. The offloaded data will be divided into
chunks to be scanned on different nodes in order to release
device D from intensive processing. Let Ci be a chunk of the
data such that C1 + C2 + · · · + Cn = C. Each Ci has its
own independent demands with respect to execution time and
energy consumed on computations. The demands are divided
into two parts: 1) local and 2) remote. The local demands refer
to the execution time and energy consumed for computations
on the device D itself. The remote ones refer to the execution
time and energy consumption on a remote device Nj such that
Nj �= D. Ci demands are dependent on the executing node
Nj. On the other hand, the survivability of the vehicular fog
is critical to guarantee the execution of the offloaded tasks.
Determining the finest distribution of chunks, on the different
node, which would lead to the best outcome with respect to
all these constraints, is a challenging problem.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 07:20:19 UTC from IEEE Xplore. Restrictions apply.

834 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

TABLE I
MODEL NOTATIONS

Definition 1: Given some chunks of data that need to be
analyzed on vehicle V , where each chunk Ci has local energy
consumption Ec

L
i , local execution time Tc

L
i , remote energy

consumption Ec
Nj
i , and remote execution time Tc

Nj
i , a network

bandwidth B, latency L, and a set of vehicular nodes N in an
ad hoc vehicular fog VC where each node Nj has an out-of-
range time nORT

j , find the best distribution of these chunks over
N such that the execution time and energy of the analysis on
the vehicle V are minimized and the offloading survivability
of VC is maximized.

This is a complex problem since it is heavily impacted by
the number of possibilities these chunks can be distributed over
participating nodes in VC, i.e., on which nearby vehicle each
chunk will be scanned. This depends on the number of ways
n different chunks can be allocated into m different sacks with
c1 chunks in the first sack, c2 in the second sack, etc., such
that c1 + c2 + · · · cm = n. In our model, the number of sacks
m refers to the number of nodes in the ad hoc vehicular fog
since each chunk can be executed on any vehicle. In order to
highlight more on the complexity of the problem, consider an
ad hoc vehicular fog consisting of ten nodes where each node
is serving a chunk of the data to be scanned. Accordingly,
each chunk can be served either locally or on any of the
nine remaining nodes. Therefore, we have 1010 different pos-
sible distributions. This number can significantly and radically
increase as the number of nodes and chunks increase reaching
10100 or even higher number if the number of nodes increases
as well.

Theorem 1: The problem described in Definition 1 is
NP-Hard.

Proof: The MOMKP [21] problem is reduced to
our problem. The MOMKP is defined as follows: given
n items (b1, b2, . . . , bn) where each one has m weights
(wi

1, wi
2, . . . , wi

m) and p values (ci
1, ci

2, . . . , ci
p), distribute the

items into different sacks such that the total p values is
maximized without exceeding the m knapsack capacities.

Consequently, an instance of our problem is constructed as
follows.

1) Having C1, C2, . . . , Ci as chunks to be scanned, which
represent items in the MOMKP, and setup N nodes in
the ad hoc vehicular fog forming the sacks.

2) Set the values for each chunk (item) Ci to be the
object functions ftci

and feci
, which define the cost scan-

ning chunks in terms of execution time and energy,
respectively.

3) Set the weights for each chunk (item) Ci to be the
demands in terms of execution time and energy when
served either locally or remotely on node Nj.

4) Set the total weights of each node as T̃Threshold and NORT
r ,

which form thresholds for execution time and survivabil-
ity, respectively in order to maintain good performance
and guarantee completion of assigned scanning tasks.

The target of our problem is to minimize the total cost of
chunks distributed on different nodes while maximizing the
survivability rather than maximizing the value in MOMKP.
However, the problem is still essentially the same. Following
the above reduction, a solution to our problem can be used
as a solution to the MOMKP one. Therefore, our problem is
NP-Hard.

We further formulate our multiobjective optimization model
by adapting it to the vehicular domain. The problem aims
to speed up the scanning process by reducing its execution
time, maximize the offloading survivability in the fog in order
to achieve a reliable intelligent offloading in VANETs, and
minimize the power consumed on data analysis on vehicle
V . Table I defines all the notations used within the below
model. We consider in this work a highway mobility topology,
which implies that the vehicles are moving in the same direc-
tion and the speed variation among the vehicles is deemed
not be high. One of the main functions in the formulated
optimization model is the offloading survivability time fac-
tor. The latter allows the model to intelligently decide on the
size of the data to be offloaded to each vehicle based on
each node’s ORT. Below we list the full three optimization
objectives.

Objective 1 (Minimizing Execution Time): The total execu-
tion/computation time of a task [depicted in (2)] consists of the
local execution time on the device (ExecutionTimepr

Nj) along
with the transmission round-trip time (ExecutionTimetr

Nj). The
round-trip time represents the time to send the chunk for
processing and receive the result, including the network
latency

FT = min
|VC|∑

Nj=1

xNj

(
ExecutionTimepr

Nj + ExecutionTimetr
Nj

)

× WFT . (2)

Objective 2 (Maximizing Offloading Survivability Time):
The offloading survivability time [depicted in (3)] is the aver-
age remaining time after all Serving Nodes have finished
execution, but before the Requesting Node goes out of the
transmission range (Tsurvivability

Nj). Algorithm 2 illustrates the

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 07:20:19 UTC from IEEE Xplore. Restrictions apply.

MOURAD et al.: AD HOC VEHICULAR FOG ENABLING COOPERATIVE LOW-LATENCY INTRUSION DETECTION 835

process of computing the offloading survivability

FS = max
|VC|∑

Nj=1

xNj

(
Tsurvivability

Nj

)
×WFS . (3)

We shed the light on two crucial constraints when deter-
mining the offloading survivability illustrated in the next
equations. If any of the two constraints is violated, the solution
is invalidated and neglected:

1) NORT
r ≥ FT ;

2) NMAX
j ≥ xNj.

The first equation involves the Requester’s ORT which indi-
cates the time by which a Requesting Node gets out of the
Master Node’s network area. We represent a node having an
ORT time as NORT

j . To further stress this point, assume a
Requester Node (NORT

j = 15) decides to offload in the ad
hoc vehicular fog at time t1, it follows that Nj should receive
the result from the Master Node before t1 + 15 s. In case the
total execution time is more than 15 s, the solution is flagged
and considered as a violation to the constraint.

The second equation involves the maximum number of
chunks that a node Nj can accommodated before it gets out of
range. This is important in order to guarantee that a Serving
Node is capable of executing all its assigned chunks before
it actually leaves the network. We represent a Serving Node
having three maximum allowed chunks as NMAX

j = 3. To fur-
ther emphasize this, assume a Serving Node NMAX

j = 3, then
it follows that this node can serve at most three chunks. If
the node is assigned more than three chunks, it is flagged and
considered as a violation to the constraint.

Objective 3 (Minimizing Energy Consumption): While com-
putational energy consumption is not an issue in the case
of vehicles, we chose to include this parameter in the
optimization problem to account for the cases wherein mobile
devices located inside vehicles might be chosen to carry out the
offloaded IDS tasks. This increases the flexibility of our solu-
tion and boosts its applicability in a wider range of practical
scenarios. The weight of this parameter can then be adjusted
according to the underlying scenario, where for example, if the
offloading nodes are vehicles, the weight of minimizing the
energy consumption can be set to 0. On the other hand, when
offloading nodes are mobile devices inside vehicles, the weight
of this function can be accordingly increased. Technically
speaking, the overall energy consumption of serving a chunk
[depicted in (4)] consists of both the energy consumed locally
for serving the underlying task and energy consumed through
offloading the task. The local energy is spent on CPU pro-
cessing (Energypr

Nj) while the offloading cost stems from the
energy spent on data transmission (Energytr

Nj), including having
the Wi-Fi radio turned on

FE = min
|VC|∑

Nj=1

xNj

(
Energypr

Nj + Energytr
Nj + Energyidle

Nj

)

× WFE . (4)

After declaring the minimization and maximization func-
tions, the multiobjective optimization problem becomes

F =
⎡

⎣
FT

FS

FE

⎤

⎦

s.t. n ∈ N

0 <= xNj <= 100

FT ≤ T̃Threshold

WFT +WFS +WFE = 1.

The first constraint is to make sure that the number of vehicles
within the ad hoc vehicular fog is a natural number. Next, the
second constraint ensures that the decision variable is between
0 and 100. In other words, the value of this variable determines
the percentage of chunks to be scanned on that node. A value
of 0 means that the device Nj will not participate in the detec-
tion process. The third constraint sets a deadline for reporting
the scanning results. All objective functions defined above are
assigned certain weights which define how important/critical
attaining these objectives would be depending on the device
state. An example could be prioritizing the offloading surviv-
ability where the remaining time after offloading within the
same ad hoc vehicular fog could be more significant than
the execution time and energy. For instance, a cluster hav-
ing frequent disconnections of its nodes would be better off
prioritizing the survivability factor over energy or execution
time. The total of these weights sums up to 1 as defined in
the fourth constraint.

V. HEURISTIC-BASED SOLUTION

In the following, we discuss our vehicular intelli-
gent and resource-aware offloading algorithms shown in
Algorithms 1–3. The input parameters of Algorithm 1 are
the size of the population N, individual length L, crossover
rate µc, and mutation rate µm as shown in line 1. Line 2
shows the final output of the algorithm, which is a set con-
taining the fittest individuals. Lines 4 and 5 initializes the
algorithm by generating an initial random population of size N.
Lines 6–11 iterates over the initial population and evaluates
each individual based on the three objective functions FT , FS,
and FE (time, offloading survivability, and energy defined in
Section IV). Algorithm 2 shows the main idea behind calcu-
lating the survivability factor, which gets invoked on line 9.
Line 13 ensures elitism in the populations by always selecting
the x best individuals and adding them to the new population.
Line 14–16 illustrate the process of breeding new offspring by
selection and applying crossover and mutation based on their
probability factors µc and µm. In lines 17–26, each individual
in the offspring generation is evaluated and checked against
the vehicular constraints. First, the objectives are evaluated
for each new individual. Next, the individual is checked for
constraints violations using Algorithm 3 in line 22. If a solu-
tion, contains a violation, the algorithm ignores it and attempts
to generate a new solution until a violation-free solution is
selected. The entire process is repeated until the termination
criteria is met as shown in line 12.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 07:20:19 UTC from IEEE Xplore. Restrictions apply.

836 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

Algorithm 1 Vehicular Resource-Aware Offloading (N, L, µc,
µm)

1: Input: Population Size N, Individual Length L, Crossover
Rate µc, Mutation Rate µm

2: Output: Set of Fittest Individuals S
3:

4: Set Initial Population Index k := 0
5: Generate Random Population Pk of Size N
6: for i← 0 to N do
7: Individual I ← Pk[i]
8: Get R::getRfromFogObserver(I)
9: Compute Offloading Survivability

OffloadingSurvivabilityProcessor(I, R)
10: Evaluate Objective Functions FT(I), FS(I), FE(I)
11: end for
12: while !Termination Criteria do
13: Select x Best Solutions from Pk and add them to Pk+1
14: Select n Fittest Solutions of Pk using Binary

Tournament such that n = N − x
15: Crossover µc n using SBX Crossover
16: Mutate µm n using Polynomial Mutation
17: for i← 0 to N do
18: Individual I ← Pk+1[i]
19: Get R::getRfromFogObserver(I)
20: Compute Offloading Survivability

OffloadingSurvivabilityProcessor(I, R)
21: Evaluate Objective Functions FT(I), FS(I), FE(I)
22: while ConstraintsEvaluator(I, R) = false do
23: Crossover µc n using SBX Crossover
24: Mutate µm n using Polynomial Mutation
25: end while
26: end for
27: K ← K + 1
28: end while
29: return S Fittest Solution From Pk

Algorithm 3 focuses on ensuring that an individual is a
valid solution that lacks violations. It expects two parameters;
an individual and Requester’s ORT. Lines 5–8 assure that the
Requesting Node will still be in the network range when all
Serving Nodes finish executing their chunks. This is done by
checking if the remote execution time of an individual I is less
than the Requesters ORT R. Lines 9–16 assure that the Serving
Node is capable of executing its assigned chunk before it gets
out of the Master Nodes range. This is achieved by checking
if the node is assigned a number of chunks exceeding the
maximum number of allowed chunks that it can execute while
it is still within the network range.

On the other hand, the offloading survivability of an indi-
vidual is calculated in Algorithm 2. The latter expects an
individual I and the Requesting Nodes ORT R. Briefly, it iter-
ates over all Serving Nodes in I and obtains the total execution
time of each node nt. Then, the difference between R and nt

is computed and added into one value for all nodes. Finally,
the average value is computed and returned.

Algorithm 2 Offloading Survivability Processor(I, R)
1: Input: Individual I and Requester out of range time R
2: Output: Offloading Survivability S of Individual I
3:

4: value←−1
5: for each Node n ∈ I do
6: if n �= Requester then
7: Get execution time nt of node n
8: value += (R− nt)

9: end if
10: end for
11: value /= I.LENGTH
12: return value

Algorithm 3 Constraints Evaluator(I, R)
1: Input: Individual I and Requester out of range time R
2: Output: true if Individual I contains no violations other-

wise false
3:

4: Get remote execution time It

5: if It ≥ R then
6: Flag[I]← true
7: return false
8: end if
9: for each Node n ∈ I do

10: Get number of assigned chunks cn

11: Get the maximum allowed chunks MAXcn

12: if cn ≥ MAXcn then
13: Flag[I]← true
14: return false
15: end if
16: end for
17: return true

TABLE II
TYPE OF DEVICES

VI. EXPERIMENTAL RESULTS

In this section, we illustrate our experiments and results. To
start with the testbed setup, these experiments are performed
on two different type of devices, installed in vehicles, which
are described in Table II.

The ad hoc vehicular fog we built is composed of ten
devices connected through Wi-Fi P2P on Android that uses
802.11 networking standard. These experiments aim to study
all of the performance, energy, and number of selected nodes
metrics. The response time of the IDS or in other words
the time needed to execute the task measure the performance
metric. As for the energy, it is the total energy spent on com-
putations and over the network connection. The number of
selected nodes refers to the reading-for-serving nodes in the
ad hoc vehicular fog. We used PowerTutor [22] to monitor the
power consumed on computations, device screen, and over

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 07:20:19 UTC from IEEE Xplore. Restrictions apply.

MOURAD et al.: AD HOC VEHICULAR FOG ENABLING COOPERATIVE LOW-LATENCY INTRUSION DETECTION 837

TABLE III
Ad Hoc VEHICULAR FOG SCENARIOS

the network for computing the energy consumed by a par-
ticular task. We also used the power profile [23] on android
devices for getting the power consumption of Wi-Fi transmis-
sion, power consumed by the CPU when idle, power consumed
by active Wi-Fi transmission, and power consumed by the
screen. The Profiler module is responsible for gathering the
CPU, memory usage, and battery level on the device.

Moreover, we provide three different states: Idle, Moderate,
and Critical for each node in order to reflect a diverse real-life
environment in our experiments. An Idle node is in stand-by
not performing any task other than the default running services
with a CPU usage between 0 and 10%. A Moderate node
performs some services, including those of GPS, networking,
Bluetooth, etc., with a CPU usage not exceeding 55%. A
Critical node can attain a very high CPU usage, above 90%,
performing several compute-intensive tasks. Accordingly, our
ad hoc vehicular fog is built using combinations of the afore-
mentioned scenarios. We include three different scenarios of
the ad hoc vehicular fog depicted in Table III. In the first sce-
nario, we consider an ad hoc vehicular fog composed of seven
Critical and three Idle nodes. In the second scenario, we con-
sider the fog to be composed of four Critical, two Moderate,
and four Idle nodes. Finally, in the third and last scenario, we
take a critical case of the fog by introducing ten Idle nodes,
five of which are moving in high speeds compared to the rest.
In addition, we consider several execution scenarios in which
we vary the nodes ability to execute chunks depending on
their ORT as illustrated in Table IV. In order to determine
a clear conclusion of our experiments, we perform the set of
executions on data of sizes 500 kB and 1 MB since the shared
files for performing intrusion detection are not big in real-life
scenarios. In fact, they contain traces for scanning generated
within minutes or hours not more, especially in the vehicular
environment with high mobility. On the other hand, we have
conducted relevant experiments in previous work in order to
study the efficiency of offloading with larger data sets [5]. The
results are promising as they positively scaled with the larger
data size ranging from 1 to 50 MB. Furthermore, we highlight
the importance of one more criterion used within our experi-
ments for representing the mobility effect of the vehicle nodes
and survivability of the clustered fog. The Requester Node’s
ORT is of vital importance since it is one of the crucial fac-
tors used in the vehicular model. We note that some results
from Equal Offloading in the vehicular experiments are not
generated in the charts, due to the fact that Equal Offloading

TABLE IV
VANET EXECUTION SCENARIOS

will not finish its execution within the requester’s ORT. This
is not the case in our solution that considers the mobility and
eliminates the vehicles going out of range while forming the
cluster.

In this work, we are dealing with a Pareto multiobjective
optimization problem where the objective functions are con-
flicting (i.e., execution time or performance, survivability, and
energy). Accordingly, there is no single dominating optimal
solution and the possible resolutions are somehow not compa-
rable without preferred constraints. In this regard, reducing
the weight of any of the objective functions is not possi-
ble without increasing at least one of the other ones. This
is known as the concept of pareto-optimality or nondominated
solutions chosen by the algorithm. In this case, an analysis
should be performed on the multiple solutions representing
the tradeoffs among the objective functions from which only
one will be chosen based on embedded decision-making task
enforcing some preferred constraints while considering the
profile statuses of the vehicular fog nodes [24]. In this con-
text, we did apply the aforementioned recommended study
by providing several experiments exploring the best solutions
with tradeoffs while enforcing constraints on one or more of
the objective functions. In other words, we have provided a
set of scenarios focusing on one or more objective functions
through varying their weights (i.e., increase/decrease their val-
ues) as illustrated in Figs. 3–8. Moreover, we did compare our
proposition to both local execution (i.e., on device) and equal
distribution (i.e., load distributed equally to all devices with-
out considering any of the criteria) approaches. We have also
conducted in previous work [25], [26] several experiments to

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 07:20:19 UTC from IEEE Xplore. Restrictions apply.

838 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

Fig. 3. Evaluation of our proposed solution in an ad hoc vehicular fog
composed of four critical, two moderate, and three idle nodes.

evaluate the overhead of NSGAII, SPEA2, IBEA, MOCell,
and SMSEMOA algorithms on mobile devices. In this regard,
NSGAII provided better performance and less energy and CPU
consumption. In this article, we adapted NSGAII [18] to the
context of ad hoc vehicular fog to classify solutions based on
their Pareto ranking and find a good tradeoff between several
conflicting objective functions.

In the below experiments we compare our VIOD module to
local execution and equal offloading. We vary the input size
between 500 kB and 1 MB for testing under different cir-
cumstances. The task execution time and the requester node
energy consumption are monitored in each scenario. Moreover,
we show the number of nodes used and the offloading sur-
vivability value of the fog. We highlight the impact of the
survivability factor by the following relation: the higher this
value is, the more time is left in the fog under the same
state for it to recover from any unexpected activity before the
Requesting Node leaves the network range. For our VIOD,
we show multiple solutions based on prioritizing the different
objectives as illustrated in Table IV.

Fig. 3 illustrates the evaluation of our approach in a sce-
nario where the ad hoc vehicular fog is composed of four
Critical, two Moderate, and three Idle nodes in a vehicular
environment. Using 500-kB input data and prioritizing the
energy over the two other objectives shows that our mod-
ule is able to reduce the energy consumption by 99.3% and
lower the execution time by 65.7% compared to local exe-
cution. Compared to equal offloading, our VIOD module is
capable of reducing energy consumption by 91.9%, lowering
execution time by 50%, and decreasing the number of used
nodes by 40%. On the other hand, prioritizing the time objec-
tive leads to 75.4% reduction in energy consumption and a
69.2% decrease in execution time compared to local execution.
Compared to Equal Offloading, our module reduces execution
time by 55% and lowers the number of selected nodes by
40%, however, it uses 64.6% more energy. Finally, regarding
the offloading survivability case, we show that even if it is
prioritized over energy and time, our VIOD still outputs good
results. Energy is reduced by 91% and execution time by 59%
compared to local execution. Compared to Equal Offloading,
energy remains the same, the number of used nodes is reduced
by 40%, and execution time is decreased by 40.7%. Similar
results are shown using 1-MB data when comparing our VIOD
to local execution. However, we note that Equal Offloading is

Fig. 4. Evaluation of our proposed solution in a ad hoc vehicular fog
composed of seven critical and three idle nodes.

not possible in this case because by the time the offloading
process finished, the Requesting Node had already gone out of
the Master Node’s range. As a result, the offloading decision is
not utilized and a final result is not received by the Requesting
Node. Another important observation is that prioritizing the
offloading survivability results in the same solution as that
of prioritizing the time objective where energy and execution
time are reduced by 75% and 69%, respectively. As a result,
we show that our VIOD outperforms Equal Offloading while
drastically improving execution time and energy consumption
when prioritizing any of the three objectives compared to local
execution.

Fig. 4 shows our approach’s evaluation using a 500-kB file
and an ad hoc vehicular fog composed of seven Critical and
three Idle nodes in a vehicular environment. Prioritizing energy
over the other two objectives, shows that our module is able
to reduce the energy 99.3% and time by 52.6% compared
to local execution. Compared to equal offloading, our VIOD
module reduced energy consumption by 91.9%, execution time
by 51%, and the number of used nodes by 40%. On the other
hand, prioritizing the time objective leads to 75.4% reduction
in energy consumption and a 65.4% decrease in execution time
compared to local execution. Compared to Equal Offloading,
our module reduces execution time by 62.8% and number of
selected nodes by 40%, however, it consumes 64.6% more
energy. Finally, regarding the offloading survivability factor,
we show that even if it is prioritized over energy and time,
our VIOD still outputs good results. Energy is reduced by
91% and execution time by 59% compared to local execu-
tion. Compared to Equal Offloading, energy remains the same,
number of used nodes is reduced by 40%, and execution time
is decreased by 55.8%. Similar results are shown using 1-
MB input data when comparing our VIOD to local execution.
However, we note that Equal Offloading is not possible in this
case because by the time it finishes, the Requesting Node had
already gone out of the Master Node’s range. Another impor-
tant observation is that prioritizing the offloading survivability
results in the same solution as that of prioritizing the time
objective. As a result, we show that our VIOD outperforms
Equal Offloading while drastically improving execution time
and energy consumption when prioritizing any of the three
objectives compared to local execution.

Table V engages deeper into illustrating the case of having
ten Idle nodes five of which are problematic. We suppose a
problematic node as a node having high moving speed com-
pared to other nodes in the ad hoc vehicular fog. Therefore,

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 07:20:19 UTC from IEEE Xplore. Restrictions apply.

MOURAD et al.: AD HOC VEHICULAR FOG ENABLING COOPERATIVE LOW-LATENCY INTRUSION DETECTION 839

TABLE V
SKIPPING NODES WITH HIGH OUT-OF-RANGE SPEED

Fig. 5. Evaluation of our proposed solution in an ad hoc vehicular fog
composed of ten idle nodes where five of which are problematic.

it has a relatively low ORT that violates one or both of our
vehicular constraints. The first row lists the nodes, the sec-
ond lists the node’s state, and the third shows whether the
node is problematic or not. The fourth, fifth, and sixth rows
show the solutions obtained using our Intelligent Offloading
Distributor adapted to the vehicular environment (VIOD mod-
ule). Even though the solutions vary depending on the weight
given to the objective functions (energy, time, and survivabil-
ity), all solutions exclude problematic nodes. In other words,
the distribution output is different, but none of the problematic
nodes are used within the solutions. Therefore, we show that
even if the node is in an Idle state and can quickly execute
offloaded chunks to reduce the execution time, the node must
not violate any vehicular constraints for it to be considered in
an intelligent solution.

Fig. 5 is devoted to show the results of the case study
shown in Table V. In a nutshell, we show the performance
of our VIOD module when all nodes are Idle and five of them
are problematic (i.e., moving fast compared to the rest). As
a first observation, we note that Equal Offloading in a vehic-
ular environment is not possible. This is due to the fact that
some of the nodes are either unable to execute at least one
chunk or unable to return the result on time (i.e., before the
requester’s ORT passes). Favoring energy over time using a
500-kB file shows that four nodes are used, 99.3% decrease
in energy, and 69% decrease in execution time when com-
pared to local execution. Another important observation is that
favoring time leads to the same optimal result as favoring sur-
vivability. Energy and execution time are reduced by 83% and
79.4%, respectively, while using five nodes of the ten nodes
composing the ad hoc vehicular fog. Comparable results are
achieved using our VIOD module under a 1-MB file. Energy
and execution time are reduced by 99.3% and 69%, respec-
tively, while selecting four nodes out of ten when energy is
prioritized. Regarding prioritizing time and survivability one
optimal solution is obtained where energy is reduced by 83.3%
and execution time is decreased by 79.4% while using five

Fig. 6. Evaluation of our proposed solution in an ad hoc vehicular fog
composed of seven critical and three idle nodes while varying the nodes ORT
using a 1-MB file.

Fig. 7. Evaluation of our proposed solution in an ad hoc vehicular fog
composed of seven critical and three idle nodes while varying the nodes ORT
using a 500-kB file.

out of the ten available nodes. Therefore, we show that our
VIOD outputs optimal and very promising results. The results
also show that Equal Offloading fails under critical scenarios.
These results can be justified by the fact that our approach
is taking into account different metrics of time, survivability
and energy with priorities relevant to each scenario in order
to decide about the best distribution of tasks.

Fig. 6 is dedicated to show the effectiveness of our VIOD
module in an ad hoc vehicular fog composed of seven Critical
and three Idle nodes while varying the node’s ORT allowing
it to execute at most 1, 3, and 5 chunks under a 1-MB file.
We start by noting that Equal Offloading is impossible under
this composition since the result won’t be received while the
Requester Node is still in range. Promising results are achieved
in all of the three cases where energy is reduced between
75.4% and 99.3%, execution time is decreased between 54.6%
and 65.4% compared to local execution. Moreover, we note
that the number of used nodes is reduced by 50% and 60%
in most cases. Finally, we show that even when the offloading
survivability is prioritized over the other objectives, similar
results are obtained. Therefore, we conclude that our VIOD
module produces favorable results regardless of the number of
chunks that a node can handle. These results can be justified by
the fact that the equal distribution would assign the same num-
ber of chunks for each node which hence might not be able to
finish their execution before going out of the range. However,
VIOD tasks into consideration the survivability aspect of the
VEC fog when assigning the tasks to each node.

Fig. 7 shows the same set of experiments as Fig. 6 but
using 500 kB of data. One major difference between both
experiments is that in the latter case, Equal Offloading is
a possibility. However, it yields a very high execution time
compared to our VIOD module. Equal offloading reduces
the execution time by only 7% while our VIOD results
show significant improvement up to 65.7%. Another important
observation is that the execution time in the Equal Offloading

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 07:20:19 UTC from IEEE Xplore. Restrictions apply.

840 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

Fig. 8. Evaluation of our proposed solution in an ad hoc vehicular fog
composed of four critical, three moderate, and four idle nodes while varying
the nodes ORT using a 1-MB file.

case is only 1 s less than the Requesting Node’s ORT. As
a result, the fog has only 1 s to resolve any delay or error
that could occur in contrast to our VIOD module which gives
the fog 7.65 s as a worst case and 9.2 s at best. The figure
also shows that our VIOD module is capable of effectively
outperforming both Local and Equal Offloading in terms of
energy and execution time. For example, the best cases show
that energy is reduced by 99.3% and 91.9% while execution
time is decreased by 65.7% and 63% compared to Local and
Equal Offloading, respectively.

Fig. 8 is dedicated to show the performance of our VIOD
model in an ad hoc vehicular fog composed of four Critical,
two Moderate, and four Idle nodes using a 1-MB file while
varying the maximum chunks a node can serve between 1, 3,
and 5. We note that Equal Offloading is not feasible under
this scenario because the offloading process takes more time
than the Requesting Node’s ORT. Another observation is that
in all cases, one solution satisfies all of the three objectives.
In other words, our VIOD module is able to generate one
optimal solution that minimizes energy and execution time on
the device and maximizes the offloading survivability of the
fog. Finally, we note that the same optimal solution is obtained
in all cases where we varied the node’s ORT. Energy and
execution time are reduced by 99.3% and 69%, respectively
when compared to local execution. The optimal solution uses
six out of ten nodes of the ad hoc vehicular fog hence saving
some resources for other offloading requests. We also note that
the fog has an offloading survivability value of 7.3 s indicating
that under the same selected nodes, status, and constraints, the
fog has 7.3 s to accommodate any delays in the offloading
decision and process. Fig. 9 shows comparable results using
a 500-kB file. Therefore, we show the effectiveness of our
VIOD module using 500 kB and 1-MB file sizes in outputting
optimal solutions satisfying the different objective functions
according to their weights and priority.

VII. SECURITY ANALYSIS

Like any distributed critical task computations, including
security services, offloading IDS services to fog at the edge
entails several challenges compared to the centralized cloud
framework. However, in the scope of this work, we are con-
cerned with the sustainability and continuity of performing
the IDS services while considering the limited resources of
the VANET platforms, and availability, communication over-
head and latency caused by the cloud framework approaches.

Fig. 9. Evaluation of our proposed solution in an ad hoc vehicular fog
composed of four critical, three moderate, and four idle nodes while varying
the nodes ORT using a 500-kB file.

In this context, we highlight in the following some related
security challenges with potential solutions to address them
based on the literature.

1) Authentication and Trust Management: According
to [27], mutual authentication among peers may be
granted by several mechanisms without the need of hav-
ing a central authentication server. Moreover, Tsai and
Lo [28] discussed the problem of authenticating users
in a distributed manner for mobile cloud computing
by using pairing cryptosystems and secure hardware.
The same problem was tackled but for the fog comput-
ing paradigm, in which they used a hybrid encryption
instead [29]. Other works, such as the ones in [30]
focused on authenticating peers according to information
extracted from their current location. Such approaches
could be adapted to the underlying infrastructures of
ad hoc vehicular fog paradigms for authenticating the
volunteering nodes. Moreover, in order to guarantee reli-
able communications among the vehicles, master nodes,
and corresponding edge devices, the concept of trust
might be employed. The idea is to help the master
node selecting edge devices that enjoy high trustwor-
thiness to offload intrusion detection tasks in order to
ensure that these tasks will be executed in a reliable
and well-performing fashion. For this end, objective trust
models [31]–[33] can be used. In objective trust, behav-
ior monitoring can be initiated by the master node in
order to directly learn the behavior of the different vehi-
cles in its cluster. In subjective trust, the master node
can consult other vehicles on the behavior of the edge
devices. Thus, vehicles send their recommendations to
the master node about the potential trust degree of the
edge devices based on their past interactions. Using
both objective and subjective trust sources, the mas-
ter node can then compute an aggregate trust level for
each corresponding edge device, which would help it in
choosing the appropriate device that will best serve each
underlying task.

2) Network Security: Trust models can also be backed
up with lightweight cryptographic solutions [34], [35],
which can be particularly useful to protect the com-
munications among master nodes, edge devices, and
fog nodes and also the data pertaining to the intru-
sion detection tasks at the storage level. Furthermore,

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 07:20:19 UTC from IEEE Xplore. Restrictions apply.

MOURAD et al.: AD HOC VEHICULAR FOG ENABLING COOPERATIVE LOW-LATENCY INTRUSION DETECTION 841

it is possible to exchange session keys by using cryp-
tographic attributes as credentials [27]. Other works
addressed the problem of maintaining the interdomain
credentials of the trust domains to establish secure chan-
nels, such as in [36]. Such solutions can be adapted to
the ad hoc vehicular edge fog paradigms due to the fact
that their requirements are soft and may be altered.

3) Privacy: Recently, privacy is one of the excessively
addressed topics in the edge computing paradigms. In
particular, many data privacy mechanisms have been
developed for the mobile cloud computing paradigm,
tackling several challenges like the privacy policies
enforcement during code and data migration [27], and
the peer-to-peer network establishment by concealing
the location of adjacent clients [37]. The main require-
ments of such mechanisms are having the devices
interconnected and knowing their physical location.
Therefore, it is more likely to invest later on in the
privacy mechanisms for collaborative ad hoc vehicu-
lar fogs. Other mechanisms exist in the literature that
tackles directly the vehicular networks and may be
adapted to the context of ad hoc vehicular fog, in which
they make full use of the interconnected local cloudlets
concept [38].

VIII. RELATED WORK

In this section, we present a literature review, including
several approaches addressing the performance of IDSs on
mobile devices, cloud-based IDS, intrusion detection in ad
hoc networks, and offloading in MEC cloud-enabled vehicular
networks.

To start with, cloud-driven intrusion detection techniques
are surveyed in [39]. The work also highlights various prob-
lems relevant to its implementation. The proposed techniques
offer many advantages when it comes to reduction in band-
width usage, the power needed for processing, and the energy
consumer on mobile devices. However, the authors also
emphasize on the fact that data should be transferred to the
cloud through network communication devices forming poten-
tial security breaches where attackers gain access to critical
information. Zonouz et al. [40] have introduced a framework
that provides efficient real-time off device protection through
continuous synchronization with an emulated device on the
cloud. The framework encompasses a client agent that continu-
ously passes devices input to the cloud where emulated devices
are hosted and events from different interfaces of the device are
analyzed to ensure periodic backup of the device. More intelli-
gent decisions can be taken in the framework proposed in [41].
It decides whether to execute the detection process locally or
offload it for cloud-based analysis along with details regarding
the security level and detection algorithm to be applied on the
device. The framework includes different intrusion detection
engines to enforce security against a wider range of mal-
ware. Continuous synchronization between mobile and cloud
services is needed.

Although the contributions of previous attempts are sig-
nificant, yet they are burdened with many limitations. First,

they all impose high power consumption for sending traces,
events, and inputs over mobile data. Also, mirroring the traf-
fic and data to the cloud overloads the mobile infrastructure
and levies extra charges on data usage. Additionally, the usage
of remote servers is not free of charge, which imposes addi-
tional cost. Furthermore, with existing Wi-Fi technologies,
these approaches suffer from intrinsic latency limitation, espe-
cially over long-distance communications. These drawbacks
have motivated our proposition for ad hoc vehicular fog,
whereby, to the best of our knowledge, none of the proposed
approaches has already considered ad hoc vehicular fog for
security services.

The only relevant work in this context is the one presented
in [42]. It introduces an elastic computing platform for
smart device. The proposed platform relies not only on
infrastructure-based cloud but also encompasses an ad hoc vir-
tual cloud to achieve higher scalability. Smart devices in the
vicinity connected via wireless radio, such as Bluetooth form
the ad hoc virtual cloud and cooperate to accomplish particular
offloaded tasks. Whereas intensive computations are handled
by the infrastructure-based cloud. Nonetheless, the authors in
this work did not emphasize on the ad hoc part or provided
technical details with respect to the offloading and coopera-
tion aspect between the nodes. Additionally, no experiments
have been discussed in terms of performance and cooperation
execution on clustered devices.

In another context, we present a state-of-the-art review of
different approach that offers a sort of protection in ad hoc
networks. Different approaches are taken for intrusion detec-
tion in mobile ad hoc networks (MANETs). While some
techniques involve an IDS agent on every single node, others
implement the IDS on existing cluster heads which reduces the
energy consumption. While an additional overhead is observed
on cluster heads, appropriate load distribution methods can
be applied to extend the node’s lifetime. Increased detection
rate and significant reduction in false positive was shown by
the proposed work in [43]. The latter proposes a dynamic
intrusion detection solution in MANETs, which by leverag-
ing genetic algorithms and artificial immune system, is able
to adapt to transformations in the network topology. In [44],
a dynamic IDS in MANETs has been presented aiming to
increase the detection rate and reduce the false positives.
Through genetic algorithm and artificial immune system, this
approach is capable of adapting changes in the network topol-
ogy. Ramkumar et al. [45] have presented a mechanism for
intrusion detection in MANETs relying on a master cluster
head. Each cluster head monitors the nodes behavior within its
cluster aiming to handle intracluster detection and elimination
of malicious nodes. However, these approaches differ from our
work in the sense that they tackle IDSs in routing protocols
as for the detection of misbehaving nodes. These works are
capable of detecting malicious nodes, while on the other hand,
our work focuses on IDS monitoring system activities within
a node.

Finally, in the field of offloading in MEC cloud-enabled
vehicular networks, few recent approaches have been proposed
to offload network and computation tasks to edge servers and
nearby devices. Zhang et al. [12] advanced a cloud-based

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 07:20:19 UTC from IEEE Xplore. Restrictions apply.

842 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 2, JANUARY 15, 2021

MEC offloading approach for vehicular networks in order
to offload efficiently the tasks to the MEC servers by either
directly uploading them, or through predictive relay transmis-
sions. Xiao et al. [13] and Sun et al. [46] proposed a learning
task offloading algorithm using the multiarmed bandit theory
for the sake of optimizing the delay performance of tasks.
Gu et al. [47] attempted to reduce the overall energy consump-
tion while taking into consideration the delay requirements
by formulating the task assignment problem as one-to-many
matching game. Al-Badarneh et al. [48] proposed network-
based stations for embedding MEC services. Atallah et al. [49]
derived and presented a polynomial-time solutions through
heuristic strategies for efficient scheduling of electric vehicles
at charging stations. However, to the best of our knowledge,
none of the current approaches has yet considered the offload-
ing of security services in a MEC fog-based vehicular envi-
ronment and provided solutions relying on infrastructure-less
architectures.

IX. CONCLUSION

In this article, we proposed a VEC fog-enabled scheme that
intelligently and efficiently offloads intrusion detection tasks
to federated vehicles to be executed with minimal latency,
while accounting for the high mobility of vehicles, availabil-
ity of resources, and survivability of the clustered vehicles.
Our approach is particularly suitable for security assurance
in next-generation AI-powered ITS that require efficient and
lightweight security solutions. The proposed approach has
been experimentally evaluated with respect to three other
approaches (i.e., local offloading, equal offloading, and intelli-
gent offloading) and on resource-constrained devices reflecting
actual ad hoc vehicular fog environment. The experimental
results show that our approach minimizes the energy con-
sumption and execution time of the intrusion detection tasks,
while increasing the offloading survivability time under differ-
ent types of nodes (i.e., idle, moderate, and critical), different
ORT percentages on the nodes (i.e., 10%, 30%, 50%, and
100%) and different intrusion detection data file sizes (i.e.,
500 kB and 1 MB). On the other hand, few aspects related to
the selection of participants in the federation of vehicles are
still missing in the proposed framework. As future work, stable
vehicular fog federation formation, vehicular federated learn-
ing, trust-based vehicular federation, trust and security relation
among vehicles, and efficient aggregation for federated intru-
sion detection may constitute promising research directions for
extending our scheme.

REFERENCES

[1] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep learn-
ing for IoT big data and streaming analytics: A survey,” IEEE Commun.
Surveys Tuts., vol. 20, no. 4, pp. 2923–2960, 4th Quart., 2018.

[2] P. Fabian, A. Rachedi, and C. Guéguen, “Programmable objective func-
tion for data transportation in the Internet of Vehicles,” Trans. Emerg.
Telecommun. Technol., vol. 31, no. 5, 2020, Art. no. e3882.

[3] W. Li and H. Song, “ART: An attack-resistant trust management scheme
for securing vehicular ad hoc networks,” IEEE Trans. Intell. Transp.
Syst., vol. 17, no. 4, pp. 960–969, Apr. 2016.

[4] M. S. Al-Kahtani, “Survey on security attacks in vehicular ad hoc
networks (VANETs),” in Proc. 6th Int. Conf. Signal Process. Commun.
Syst., Gold Coast, QLD, Australia, 2012, pp. 1–9.

[5] T. Dbouk, A. Mourad, H. Otrok, H. Tout, and C. Talhi, “A novel ad-hoc
mobile edge cloud offering security services through intelligent resource-
aware offloading,” IEEE Trans. Netw. Service Manag., vol. 16, no. 4,
pp. 1665–1680, Dec. 2019.

[6] S. Jošilo and G. Dán, “Selfish decentralized computation offloading
for mobile cloud computing in dense wireless networks,” IEEE Trans.
Mobile Comput., vol. 18, no. 1, pp. 207–220, Jan. 2019.

[7] A. Gharaibeh, A. Khreishah, M. Mohammadi, A. Al-Fuqaha, I. Khalil,
and A. Rayes, “Online auction of cloud resources in support of
the Internet of Things,” IEEE Internet Things J., vol. 4, no. 5,
pp. 1583–1596, Oct. 2017.

[8] T. Mekki, I. Jabri, A. Rachedi, and M. ben Jemaa, “Vehicular
cloud networks: Challenges, architectures, and future directions,” Veh.
Commun., vol. 9, pp. 268–280, Jul. 2017.

[9] T. Mekki, I. Jabri, A. Rachedi, and M. B. Jemaa, “Vehicular cloud
networking: Evolutionary game with reinforcement learning-based
access approach,” Int. J. Bio-Inspired Comput., vol. 13, no. 1, pp. 45–58,
2019.

[10] M. Khabbaz, “Modelling and analysis of a novel vehicular mobility
management scheme to enhance connectivity in vehicular environments,”
IEEE Access, vol. 7, pp. 120282–120296, 2019.

[11] H. Liu, F. Eldarrat, H. Alqahtani, A. Reznik, X. de Foy, and Y. Zhang,
“Mobile edge cloud system: Architectures, challenges, and approaches,”
IEEE Syst. J., vol. 12, no. 3, pp. 2495–2508, Sep. 2018.

[12] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang, “Mobile-edge
computing for vehicular networks: A promising network paradigm
with predictive off-loading,” IEEE Veh. Technol. Mag., vol. 12, no. 2,
pp. 36–44, Jun. 2017.

[13] L. Xiao, W. Zhuang, S. Zhou, and C. Chen, “Learning while
offloading: Task offloading in vehicular edge computing network,”
in Learning-based VANET Communication and Security Techniques.
Cham, Switzerland: Springer, 2019, pp. 49–77.

[14] I. Jabri, T. Mekki, A. Rachedi, and M. B. Jemaa, “Vehicular fog gate-
ways selection on the Internet of Vehicles: A fuzzy logic with ant colony
optimization based approach,” Ad Hoc Netw., vol. 91, Aug. 2019, Art.
no. 101879.

[15] H. Sami and A. Mourad, “Dynamic on-demand fog formation offering
on-the-fly IoT service deployment,” IEEE Trans. Netw. Service Manag.,
vol. 17, no. 2, pp. 1026–1039, Jun. 2020.

[16] H. Sami, A. Mourad, and W. El-Haj, “Vehicular-obus-as-on-demand-
fogs: Resource and context aware deployment of containerized micro-
services,” IEEE/ACM Trans. Netw., vol. 28, no. 2, pp. 778–790,
Apr. 2020.

[17] A. Rachedi and H. Badis, “BadZak: An hybrid architecture based on
virtual backbone and software defined network for Internet of Vehicles,”
in Proc. IEEE Int. Conf. Commun. (ICC), Kansas City, MO, USA, 2018,
pp. 1–7.

[18] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[19] O. A. Wahab, H. Otrok, and A. Mourad, “Vanet QoS-OLSR: QoS-based
clustering protocol for vehicular ad hoc networks,” Comput. Commun.,
vol. 36, no. 13, pp. 1422–1435, 2013.

[20] M. Norton and D. Roelker, Snort 2.0: Hi-Performance Multi-Rule
Inspection Engine, Sourcefire Netw. Security Inc, Columbia, MD, USA,
2002.

[21] T. Lust and J. Teghem, “The multiobjective multidimensional knapsack
problem: A survey and a new approach,” Int. Trans. Oper. Res., vol. 19,
no. 4, pp. 495–520, 2012.

[22] L. Zhang et al., “Accurate online power estimation and automatic
battery behavior based power model generation for smartphones,” in
Proc. 8th IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign Syst.
Synth., Scottsdale, AZ, USA, 2010, pp. 105–114.

[23] Power Profile for Android, Android, Mountain View, CA, USA, 2020.
[Online]. Available: https://source.android.com/devices/tech/power/

[24] R. Jena, “Multi objective task scheduling in cloud environment using
nested PSO framework,” Procedia Comput. Sci., vol. 57, pp. 1219–1227,
Jan. 2015.

[25] H. Tout, C. Talhi, N. Kara, and A. Mourad, “Selective mobile cloud
offloading to augment multi-persona performance and viability,” IEEE
Trans. Cloud Comput., vol. 7, no. 2, pp. 314–328, Apr.–Jun. 2019.

[26] H. Tout, C. Talhi, N. Kara, and A. Mourad, “Smart mobile computation
offloading: Centralized selective and multi-objective approach,” Expert
Syst. Appl., vol. 80, pp. 1–13, Sep. 2017.

[27] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog
et al.: A survey and analysis of security threats and challenges,” Future
Gener. Comput. Syst., vol. 78, pp. 680–698, Jan. 2018.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 07:20:19 UTC from IEEE Xplore. Restrictions apply.

MOURAD et al.: AD HOC VEHICULAR FOG ENABLING COOPERATIVE LOW-LATENCY INTRUSION DETECTION 843

[28] J.-L. Tsai and N.-W. Lo, “A privacy-aware authentication scheme for
distributed mobile cloud computing services,” IEEE Syst. J., vol. 9, no. 3,
pp. 805–815, Sep. 2015.

[29] I. Stojmenovic, S. Wen, X. Huang, and H. Luan, “An overview of fog
computing and its security issues,” Concurrency Comput. Pract. Exp.,
vol. 28, no. 10, pp. 2991–3005, 2016.

[30] S. Xu, E. P. Ratazzi, and W. Du, “Security architecture for federated
mobile cloud computing,” in Proc. Mobile Cloud Security Conf., 2016.

[31] H. Otrok, A. Mourad, J.-M. Robert, N. Moati, and H. Sanadiki,
“A cluster-based model for QoS-OLSR protocol,” in Proc. IEEE 7th
Int. Wireless Commun. Mobile Comput. Conf., Istanbul, Turkey, 2011,
pp. 1099–1104.

[32] N. Moati, H. Otrok, A. Mourad, and J.-M. Robert, “Reputation-based
cooperative detection model of selfish nodes in cluster-based QoS-OLSR
protocol,” Wireless Pers. Commun., vol. 75, no. 3, pp. 1747–1768, 2014.

[33] O. A. Wahab, J. Bentahar, H. Otrok, and A. Mourad, “Optimal load
distribution for the detection of VM-based DDOS attacks in the
cloud,” IEEE Trans. Services Comput., vol. 13, no. 1, pp. 114–129,
Jan./Feb. 2020.

[34] J. Ni, K. Zhang, X. Lin, and X. S. Shen, “Securing fog computing
for Internet of Things applications: Challenges and solutions,” IEEE
Commun. Surveys Tuts., vol. 20, no. 1, pp. 601–628, 1st Quart., 2018.

[35] R. Yang, Q. Xu, M. H. Au, Z. Yu, H. Wang, and L. Zhou, “Position
based cryptography with location privacy: A step for fog computing,”
Future Gener. Comput. Syst., vol. 78, pp. 799–806, Jan. 2018.

[36] H. M. Pimentel, S. Kopp, M. A. Simplicio, Jr, R. M. Silveira, and
G. Bressan, “OCP: A protocol for secure communication in federated
content networks,” Comput. Commun., vol. 68, pp. 47–60, Sep. 2015.

[37] H. Zhang, N. Yu, and Y. Wen, “Mobile cloud computing based privacy
protection in location-based information survey applications,” Security
Commun. Netw., vol. 8, no. 6, pp. 1006–1025, 2015.

[38] X. Huang, R. Yu, J. Kang, N. Wang, S. Maharjan, and Y. Zhang,
“Software defined networking with pseudonym systems for secure
vehicular clouds,” IEEE Access, vol. 4, pp. 3522–3534, 2016.

[39] Z. Inayat, A. Gani, N. B. Anuar, S. Anwar, and M. K. Khan, “Cloud-
based intrusion detection and response system: Open research issues,
and solutions,” Arabian J. Sci. Eng., vol. 42, no. 2, pp. 399–423, 2017.

[40] S. Zonouz, A. Houmansadr, R. Berthier, N. Borisov, and W. H. Sanders,
“Secloud: A cloud-based comprehensive and lightweight security
solution for smartphones,” Comput. Security, vol. 37, pp. 215–227,
Sep. 2013.

[41] D. Damopoulos, G. Kambourakis, and G. Portokalidis, “The best of both
worlds: A framework for the synergistic operation of host and cloud
anomaly-based ids for smartphones,” in Proc. 7th Eur. Workshop Syst.
Security (EuroSec’14), New Yark, NY, USA, Apr. 2014, pp. 1–6.

[42] W. Zhang, Y. Wen, J. Wu, and H. Li, “Toward a unified elastic computing
platform for smartphones with cloud support,” IEEE Network, vol. 27,
no. 5, pp. 34–40, Sep./Oct. 2013.

[43] F. Barani, “A hybrid approach for dynamic intrusion detection in ad
hoc networks using genetic algorithm and artificial immune system,” in
Proc. IEEE Iran. Conf. Intell. Syst. (ICIS), Bam, Iran, 2014, pp. 1–6.

[44] A. A. Korba, M. Nafaa, and Y. Ghamri-Doudane, “Anomaly-based intru-
sion detection system for ad hoc networks,” in Proc. IEEE 7th Int. Conf.
Netw. Future (NOF), Buzios, Brazil, 2016, pp. 1–3.

[45] P. Ramkumar, V. Vimala, and G. S. Sundari, “Homogeneous and het-
rogeneous intrusion detection system in mobile ad hoc networks,” in
Proc. IEEE Int. Conf. Comput. Technol. Intell. Data Eng. (ICCTIDE’16),
Kovilpatti, India, 2016, pp. 1–5.

[46] Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Learning-based
task offloading for vehicular cloud computing systems,” in Proc. IEEE
Int. Conf. Commun. (ICC), Kansas City, MO, USA, 2018, pp. 1–7.

[47] B. Gu, Y. Chen, H. Liao, Z. Zhou, and D. Zhang, “A distributed and
context-aware task assignment mechanism for collaborative mobile edge
computing,” Sensors, vol. 18, no. 8, p. 2423, 2018.

[48] J. Al-Badarneh, Y. Jararweh, M. Al-Ayyoub, R. Fontes, M. Al-Smadi,
and C. Rothenberg, “Cooperative mobile edge computing system for
vanet-based software-defined content delivery,” Comput. Elect. Eng.,
vol. 71, pp. 388–397, Oct. 2018.

[49] R. F. Atallah, C. M. Assi, W. Fawaz, M. H. K. Tushar, and
M. J. Khabbaz, “Optimal supercharge scheduling of electric vehicles:
Centralized versus decentralized methods,” IEEE Trans. Veh. Technol.,
vol. 67, no. 9, pp. 7896–7909, Sep. 2018.

Azzam Mourad (Senior Member, IEEE) received the Ph.D. degree in ECE
from Concordia University, Montreal, QC, Canada, in 2009.

He is currently an Associate Professor of computer science with Lebanese
American University, Beirut, Lebanon, and also an Affiliate Associate
Professor with the Software Engineering and IT Department, École de
Technologie Supérieure, Montreal.

Dr. Mourad has served/serves as an Associate Editor for the IEEE
TRANSACTION ON NETWORK AND SERVICE MANAGEMENT, IEEE
NETWORK, the IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY,
IET Quantum Communication, and IEEE COMMUNICATIONS LETTER. He
has also served/serves as the General Chair of IWCMC2020, the General
Co-Chair of WiMob2016, and the Track Chair, a TPC member, and a reviewer
of several prestigious journals and conferences.

Hanine Tout received the M.Sc. degree in computer science from Lebanese
American University, Beirut, Lebanon, in 2014, and the Ph.D. degree in soft-
ware engineering from the École de Technologie Supérieure (ETS), Montreal,
QC, Canada, in 2018.

She is a Postdoctoral Fellow with ETS and Ericsson Canada, Mississauga,
ON, Canada, where she is leading two industrial projects in the areas of AI,
federated learning, machine learning, security, 5G, and cloud-native IMS.

Dr. Tout is a TPC member and reviewer of prestigious conferences and
journals.

Omar Abdel Wahab received the M.Sc. degree in 2014, and the Ph.D. degree
in information and systems engineering from Concordia University, Montreal,
QC, Canada, in 2018.

He is an Assistant Professor with the Department of Computer Science
and Engineering, University of Quebec at Outaouais, Gatineau, QC, Canada.
His current research activities are in the areas of artificial intelligence,
cybersecurity, cloud computing, and big data analytics.

Dr. Wahab is a TPC member of several prestigious conferences and
reviewer of several highly ranked journals.

Hadi Otrok (Senior Member, IEEE) received the Ph.D. degree in ECE from
Concordia University, Montreal, QC, Canada, in 2009.

He holds an Associate Professor position with the Department of ECE,
Khalifa University of Science and Technology, Abu Dhabi, UAE, an Affiliate
Associate Professor with the Concordia Institute for Information Systems
Engineering, Concordia University, and an Affiliate Associate Professor with
the Electrical Department, École de Technologie Supérieure (ETS), Montreal.
His research interests include the domain of computer and network security,
crowd sensing and sourcing, ad hoc networks, and blockchain.

Dr. Otrok is an Associate Editor of Ad Hoc Networks (Elsevier) and IEEE
NETWORKS. He served in the editorial board of IEEE COMMUNICATION

LETTERS. He co-chaired several committees at various IEEE conferences.

Toufic Dbouk received the M.Sc. degree in computer science from Lebanese
American University, Beirut, Lebanon, in 2017.

He is currently a Senior Software Engineer with Samsung Electronics
America, Ridgefield Park, NJ, USA. His research interest is in mobile
computing, computation offloading, and intrusion detection systems.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 07:20:19 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

