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AbstrAct
With the ever increasing number of cyber-at-

tacks, Internet of Things (IoT) devices are being 
exposed to serious malware, attacks, and mali-
cious activities alongside their development. 
While past research has been focused on central-
ized intrusion detection assuming the existence of 
a central entity to store and perform analysis on 
data from all participant devices, these approach-
es cannot scale well with the fast growth of IoT 
connected devices and introduce a single-point 
failure risk that may compromise data privacy. 
Moreover, with data being widely spread across 
large networks of connected devices, decentral-
ized computations are very much in need. In this 
context, we propose in this article a Federated 
Learning based scheme for IoT intrusion detec-
tion that maintains data privacy by performing 
local training and inference of detection models. 
In this scheme, not only privacy can be assured, 
but also devices can benefit from their peers’ 
knowledge by communicating only their updates 
with a remote server that aggregates the latter 
and shares an improved detection model with 
participating devices. We perform thorough 
experiments on an NSL-KDD dataset to evaluate 
the efficiency of the proposed approach. Experi-
mental results and empirical analysis explore the 
robustness and advantages of the proposed Fed-
erated Learning detection model by reaching an 
accuracy close to that of the centralized approach 
and outperforming the distributed unaggregated 
on-device trained models.

IntroductIon
As the name implies, Internet of Things (IoT) is 
about connecting a very wide variety of things to 
the Internet. Any object equipped with proces-
sor, network connectivity, actuators and embed-
ded sensors can be part of the IoT environment. 
By connecting the devices and transferring the 
sensed data over the network, IoT provides useful 
services in numerous applications such as home 
automation, transportation systems, health, social 
life, agriculture, and many more [1]. IoT technol-
ogies push the connected devices to be moni-
tored, engaging the collection and analysis of a 
huge amount of data, yet raising serious security 
issues. As massive data between the devices and 
the outside resources is exchanged at the net-
work layer, intruders can compromise this layer 
and can easily target many IoT devices, which 
lack appropriate security defenses. Moreover, 

the ever increasing number of IoT devices lack-
ing computation resources fails at security and 
opens opportunities for intruders to access them 
through different manners such as botnets with 
distributed denial of service, collusion attacks, 
malicious emails, and many more. Gemalto [2], 
the world leading company in digital security, 
highlighted that 52 percent of businesses are still 
not able to detect whether their IoT devices have 
been breached. When unknown cyber-attacks 
are increasingly emerging, and when the devices 
are highly vulnerable to malicious activities and 
intrusions, Intrusion Detection Systems (IDSs) [1] 
that monitor the network and detect malicious 
activities become vital to adopt.

Intrusion detection approaches can be clas-
sified as either signature or anomaly based. For 
the signature-based approach, attack rules or 
patterns, known as signatures, are predefined 
and stored for further analysis. By compar-
ing certain data collected from the devices to 
the signatures, only known intrusions can be 
detected, which prevents the signature-based 
techniques from detecting zero-day attacks. On 
the other hand, anomaly-based methods build 
a model by studying the behavior of the normal 
samples through their features, and any devia-
tion can be detected as suspicious action on the 
device. In these intrusion detection approach-
es, machine learning (ML) methods have been 
extensively adopted [3] with their success in 
developing intelligent systems. Existing central-
ized-based intrusion detection solutions imply 
training data generated by IoT devices either on 
the cloud [4], or in closer fog infrastructure [5, 
6]. Typically, data gathered from end terminals is 
used for training and generating a model, which 
is used for prediction/classification. Although 
these approaches are able to detect intrusions 
with high accuracy, there are many issues 
entailed with such practices. First, with the mas-
sive amount of data generated by end-devices 
and communicated to the operator data cen-
ter, latency is a significant issue that should be 
taken into consideration. This drives to longer 
processing time due to the distance between the 
IoT devices and the geographic location of the 
intrusion detection system. Considering a regu-
lar system having a single attack detector entity, 
the latter would perform badly when handling 
a large number of connected IoT devices, as it 
engages more processing data and time. More-
over, sending all data over the network imposes 
other problems such as high transfer cost and 
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significant communication overhead. Further, 
the data held or sensed on these devices is pri-
vate in nature. Sharing it over the networks also 
makes it vulnerable to a variety of attacks caus-
ing critical consequences. Eventually, attackers 
may take control over IoT connected devices. 
Hence, whenever raw data leaves its hosts, pri-
vacy and security will be on the line. On-device 
learning [7], known also as self-learning, has 
been advanced as a potential solution through 
which both training and inference are performed 
locally on the devices based on their own data. 
Nonetheless, on-device learning is limited to per 
user experience independently. In other words, 
if the same application is running and the same 
behavior is detected on different devices, the 
latter will not benefit from each others’ detection 
model as no knowledge is shared among them. 
Accordingly, both centralized and on-device 
learning still maintain crucial issues raising the 
need to rethink the design of machine learning, 
particularly the way data is communicated and 
analyzed. Further, such a solution should hold 
a trade-off between privacy, accuracy, commu-
nication cost, and latency. In other words, it has 
to preserve data privacy while still maintaining 
good accuracy for the generated models with 
low communication cost and acceptable latency.

To address the aforementioned limitations, we 
propose in this article a privacy-preserving Fed-
erated Learning (FL) scheme for IoT intrusion 
detection. Recent innovations have opened the 
door for FL [8] which is nowadays turning the cor-
ner and heading toward widespread adoption, 
being able to share peers’ knowledge and main-
tain privacy. In our proposed approach, instead of 
engaging a centralized entity to which the devic-
es send their data, we decentralize the machine 
learning tasks by moving the training of IDS mod-
els into the devices. In this context, (1) the learn-
ing and inference processes are performed on the 
devices, (2) data is never shared with external par-
ties, and (3) only model parameters are commu-
nicated with a centralized entity responsible for 
disseminating global improvement of the model, 
making the latter better for all participants. The 
aim of the proposed scheme is reaching a detec-
tion accuracy as close as the one of centralized 
IDS, while at the same time maintaining privacy 
and security of sensed data and reducing commu-
nication overhead. The contributions of this work 
are summarized as follows:
• Building a novel privacy-preserving federat-

ed learning scheme for IoT intrusion detec-
tion, which trains the models on devices 
and federates their learning. We believe that 
the provided investigation of the literature 
and proposed approach may offer relevant 
insights for further research advancements in 
this direction.

• Elaborating thorough evaluation using the 
NSL-KDD dataset [9] and covering different 
real-life scenarios of data distribution with 
respect to the attack types. Experimen-
tal results explore the efficiency of sharing 
and aggregating the models in FL settings 
compared to the centralized and self-learn-
ing approaches (i.e., “Cloud-centric ML for 
Mobile” and “On-Device Learning” as pre-
sented in [7]).

The rest of the article is organized as follows. 
We present in the next section the various exist-
ing works for intrusion detection in IoT, as well as 
the approaches for FL. Then, we propose a priva-
cy-preserving federated learning scheme for IoT 
intrusion detection, followed by a performance 
evaluation. Finally, the last section concludes the 
article.

FederAted LeArnIng And  
Iot IntrusIon detectIon: LIterAture overvIew

In this section, we provide a state of the art review 
of both the IoT intrusion detection approaches 
and the different federated learning aspects.

Iot IntrusIon detectIon
With the development of IoT and the increasing 
number of their cyber-attacks, many approaches 
have been proposed for IoT intrusion detection. 
A framework to detect anomalies in IoT networks 
and to provide Security as a Service has been pre-
sented in [1]. The framework consists of three 
phases: network connection, anomaly detection, 
and mitigation. In the first phase, the host network 
is monitored, and the network protocol currently 
used is identified in order to make a virtual net-
work connection. Next, a machine learning mod-
ule is dedicated for anomaly detection. This 
module allows optimized data packet collection 
and transformation, which enables IDS to run on 
resource constrained hardware. In the last phase, 
an actuator module raises a mitigation flag and 
the handler component reacts to the response 
accordingly.

An anomaly detection system is presented in 
[10] where a dimension reduction model and a 
classifier are deployed. For dimension reduction, 
Principle Component Analysis is used to prevent 
both performance degradation of fault diagno-
sis and real-time requirement threat caused by 
complex computations. As for the classifier, the 
softmax regression algorithm is leveraged and 
compared to the k-nearest neighbor (knn) when 
varying the number of features from 3, 6 to 10. 
In [3], the authors have proposed a classification 
algorithm for intrusion detection while consider-
ing the resource-constraint devices of IoT. The 
solution encompasses two distinct phases. First, 
a Negative Selection algorithm that is robust to 
complex classification problems is used. Since 
this algorithm is unsuitable for large-scale clas-
sification of normal and abnormal samples, it is 
implemented to build a training set representing 
only the normal behavior of the network. Then, 
a Neural Network is trained and used for the 
actual classification of the attack samples. Thus, 
this approach does not impose the overhead 
of the training process on the end-devices and 
conserves their limited power and computational 
capabilities.

The IoT framework, implemented in [5] for 
attack detection, is based on fog computing. 
As opposed to the centralized mechanisms that 
poorly perform due to the IoT device require-
ments such as low latency, resource constraints, 
and scalability, fog computing replaces cloud 
computing in this approach. The attack detec-
tion of a group of devices is handled by the fog 
to which they are connected, where an ELM-
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based Semi-Supervised Fuzzy C-Means method 
is performed. In [6], a distributed based attack 
detection mechanism has been proposed while 
considering the underlying requirements of IoT 
devices such as resource restrictions, low power 
and mobility. The attack detection in the pro-
posed method, which is performed using Deep 
Learning, is done at the fog layer where the 
models are trained on a distributed number of 
nodes.

In the aforementioned approaches, the train-
ing model and intrusion detection methods are 
performed on central nodes, whereas different 
approaches are applied in which a centralized 
server/cloud/fog takes responsibility of train-
ing and attack detection. However, this pro-
cess demands transmitting IoT data outside the 
devices, which does not ensure privacy, risks the 
security of transmitted data, entails high latency 
overhead, and requires significant communication 
cost.

FederAted LeArnIng
Recent research works in Federated Learning 
have been advanced to address different aspects 
of communication cost, client selection, privacy, 
security and resource allocation. In what follows, 
we present an overview of these aspects. As FL 
requires that each user downloads the current 
version of the model and then sends it to the 
cloud after updating it, a new problem related to 
connectivity arises, especially because the uplink 
has generally lower network connection com-
pared to the downlink. To minimize the communi-
cation cost, the authors in [11] have proposed to 
replace the enormous number of rounds required 
in the typical FL with only one. Such a one-shot 
FL approach requires the clients to complete 
the training until convergence, and only the one 
having the baseline amount of data can share its 
model updates. The client selection aspect in Fed-
erated Learning has been discussed in [12]. As 

longer update and upload time of the models are 
engaged when resource constrained devices are 
participating, the proposed approach selects the 
clients according to their time-based resources. 
Moreover, by providing some incentives, another 
set of clients is selected to upload a small amount 
of their raw data to the server in order to make 
the FL model more robust.

Although Federated Learning has been pro-
posed as a privacy-preserved solution, malicious 
actors may still find their way into such systems. 
Therefore, the authors in [13] have proposed a 
new privacy-preserved scheme to detect caus-
ative attacks, which are able to harm the learned 
model by injecting malicious training results. The 
integrity of the deep learning training process is 
guaranteed based on a trusted execution environ-
ment. In [14], a secure mechanism for data col-
laboration is built in the IoT environment. Under 
the setting of Federated Learning, the framework 
deals with large-scale data from multiple parties 
and their data security is guaranteed using the 
Blockchain paradigm.

Special attention has been given to study FL 
resource allocation in the context of wireless 
networks. In [15], the authors have proposed a 
model for analyzing and characterizing the per-
formance of FL. Tractable expressions are derived 
for the convergence rate of FL considering the 
effects of both scheduling schemes and inter-
cell interference. Moreover, they have studied 
the effectiveness (convergence rate) of random 
scheduling, round robin, and proportional fair 
scheduling policies.

While FL is currently an active research area, 
many efforts are being advanced for each of the 
discussed aspects. However, there is still lots of 
room for further FL-based contributions in differ-
ent fields. Along with this wave of innovations, 
we aim in this work to investigate the applicability 
and efficiency of federated learning for IoT intru-
sion detection.

FIGURE 1. High level architecture: Federated Learning for IoT intrusion detection.
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FederAted LeArnIng For Iot IntrusIon 
detectIon: A new PrIvAcy-PreservIng scheme

Figure 1 depicts the architecture of the proposed 
FL scheme for IoT intrusion detection, where a 
large number of devices are connected to the 
network and positioned in different sites. While 
these devices are connected to gateways, their 
network data is monitored by a profiler for further 
analysis in the AI-based intrusion detector running 
on IoT devices. Such on-device intelligence offers 
the autonomy of local intrusion detection through 
local execution of the training, parameters opti-
mization and inference. Further, it accelerates the 
detection time as analysis is performed locally 
where the data is generated. Selected IoT devic-
es communicate their machine learning models 
with a server-based aggregation platform, which 
is in place to aggregate their models and gener-
ate an enhanced intrusion detection model with 
optimized parameters. All the communications 
between the IoT devices and the aggregation plat-
form are handled by the communication manager. 
Adapting existing relevant solutions (e.g., [12]) for 
selecting the clients participating in the FL process 
should take into consideration the IoT devices 
resources, time consumption, and communication 
cost. Exchanging the detection models with the 
server-based platform provides global intelligence 
insights on the latter, aiming to achieve close 
accuracy of centralized ML analysis, which rath-
er has global data insights. The optimized model 
is then communicated back with the distributed 
IoT devices, and hence the knowledge is shared 
among them. This sharing scheme results in better 
learning as it enables a device to detect intrusions 
learned based on comparable behavior generated 
from different participating devices.

An illustrative scenario exploring the inter-
actions among the different modules of the 
proposed FL IoT intrusion detection scheme is 
depicted in Fig. 2. Initially, random IoT nodes, 
which are idle, charging, and on unmetered WiFi 
connection, are chosen by the server to partici-
pate in the FL process. Afterwards, the different 
parties of the system communicate as follows.

Step 1: The server generates a generic intru-
sion model where a neural network architecture 
is built. At this stage, the number of hidden layers, 
neurons, epochs, and so on, are identified.

Step 2: The model is downloaded by the 
nodes that wish to use the model, whether con-
tributing or not in the FL process.

Step 3: The selected nodes keep their local 
data private and use them on-device to enhance 
the model being studied.

Step 4: Only the model parameters of the 
updated intrusion detection model are shared 
with the central server instead of sending sensitive 
data and intruding the privacy of the nodes.

Step 5: The server aggregates the weights 
from the different node models once all the 
updates are received and creates a new updated 
model. For the aggregation, the FederatedAver-
aging algorithm is used, in which the parameters 
are weighted based on the nodes dataset size. 
The full process and steps of the algorithm are 
presented in [8].

Step 6: The server pushes back the updated 
model parameters to the nodes.

Step 7: Each node uses the updated model 
parameters and improves them based on its new 
generated data.

Steps 4, 5, 6, and 7 are repeated for continu-
ous learning and improvement of the model. 

The added value of federated intrusion detec-
tion models lies in the following. By replacing the 

FIGURE 2. Illustrative scenario: interactions among the different modules for achieving federated intrusion 
detection.
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traditional machine learning approaches with FL, 
security and privacy of data generated by IoT 
devices are preserved while reducing the commu-
nication overhead. The high amount of sensitive 
and private data is not shared anymore with a 
central server. Instead, the training is done locally 
on the devices and only the model updates are 
exchanged. In addition, FL not only gets rid of 
the latency that occurs from the large amount 
of transmitted data, but also allows real time pre-
diction of the anomalies with on-device predic-
tion. Moreover, when there is no connection, the 
devices can still independently predict and detect 
anomalies in the network since the models are 
locally presented. Compared also with on-device 
self-learning, FL gets the benefit of the peers’ 
model and makes it possible to detect intrusions 
not generated previously by its own traffic.

evALuAtIon methodoLogy
We provide in this section a brief description of 
the dataset used in our experiments, the pre-pro-
cessing phase performed on the data, and the 
metric used for evaluation.

dAtA descrIPtIon
NSL-KDD [9] is a widely adopted dataset for the 
evaluation of intrusion detection methods, which 
we have used to validate our model. The data-
set contains 148,517 records split for the training 
and testing, each of 41 features such as dura-
tion, protocol type, service, flag, and so on. The 
benign records are labeled as normal, while the 
malicious ones are labeled based on the specific 
attack types falling in one of the following cat-
egories: Denial of Service (DoS), User to Root 
Attack (U2R), Remote to Local Attack (R2L) and 
Probing Attack. Beside the attack types presented 
in the training set, the test set includes 17 new 
attack types to make the data more realistic and 
evaluate the efficiency of the models in detecting 
unknown attacks. From the NSL-KDD dataset, we 
have used in our experiments the ‘KDDTrain+’ 
dataset for data distribution over the nodes and 
models training, and the ‘KDDTest+’, which is 
placed and performed on each node device for 
testing.

dAtA Pre-ProcessIng
Before starting training the models, data has 
been prepared for consumption. First, we have 
encoded the three categorical features; “proto-
col_type,” “service,” and “flag” using one-hot 
encoding. The latter converts the data to numer-
ical values, to be handled by the neural network. 
Next, a distance-based method has been adopt-
ed as the features in the NSL-KDD are distribut-
ed very widely, which results in domination of 
some features and missing out of critical infor-
mation in others. In our experiments, we have 
used Min-Max normalization to scale our fea-
tures to a 0–1 range. We have used the same 
pre-processing techniques for testing. When per-
forming the encoding technique, we have made 
sure that both training and testing sets are con-
sistent in terms of number of columns generated. 
As for the normalization, proper scaler between 
the two sets is used to avoid bias in the results. 
After tuning the hyper-parameters, we have built 
the FL model using 122 input variables, 288 neu-

rons for the hidden layer, and two neurons in the 
output layer to represent the abnormal and nor-
mal decision. The same configuration has been 
applied for both the centralized and self-learning 
techniques for fair comparison.

evALuAtIon crIterIA
The following are the common indicators used to 
analyze the intrusion detection performance:
• True Positive (TP): Indicates the number of 

abnormal samples correctly classified as 
abnormal.

• True Negative (TN): Indicates the number of 
normal samples correctly classified as nor-
mal.

• False Positive (FP): Indicates the number 
of normal samples incorrectly classified as 
abnormal.

• False Negative (FN): Indicates the number 
of abnormal samples incorrectly classified as 
normal.
Based on the aforementioned indicators and 

their confusion matrix, we have adopted the accu-
racy metric to evaluate and compare the generat-
ed models.

exPerImentAL resuLts: centrALIzed vs 
on-devIce vs FederAted LeArnIng

The objectives of our experiments, conducted 
using Raspberry Pi devices, are the following:
• Build and evaluate a centralized model, 

where the full training set is stored and pro-
cessed on the server.

• Distribute the training data over nodes while 
evaluating how efficient is each node’s 
model and how close is compared to the 
centralized model. This represents the 
self-learning setting, where each node trains 
its own data only without benefiting from 
peer’s data or models.

• Embed and evaluate the federated learning 
scheme using five rounds of communica-
tion. In these experiments, we analyze the 
improvement of the models after being 
aggregated and we compare as well the FL 
models to the centralized and self-learning 
(i.e., “Cloud-centric ML for Mobile” and 
“On-Device Learning” as presented in [7]) 
approaches. The centralized-based scenar-
io is considered the best in terms of model 
accuracy, yet with major privacy issues and 
overhead of data communications since 
training data is all gathered on a remote 
entity. Therefore, the provided experiments 
explore that our federated learning-based 
scheme can reach comparable accuracy 
while guaranteeing data privacy.
In the centralized approach, 100 percent of 

the data is used for training and testing. Using the 
obtained confusion matrix (TP = 9 308, TN = 9 
423, FP = 288, and FN = 3 525), the results show 
83.09 percent accuracy.

use cAse #1: dAtA dIstrIbutIon Per AttAck tyPe
In this set of experiments, we consider the use 
case where four nodes are distributed over the 
network, each representing an intrusion detec-
tion system. We assume that the 4 IDS monitoring 
network traffic are generated by 4 sub-networks, 
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where the malicious traffic seen by each IDS 
belongs to one specific attack type. Therefore, 
nodes 1, 2, 3, and 4 represent IDS monitoring 
network traffic of Dos, Probe, U2R, and R2L, 
respectively. Besides the abnormal data, normal 
samples of the same number of the attacks are 
randomly distributed among the clients where 
no redundant data exists. Accordingly, Table 1 
shows the training data distribution of the 4 IDS. 
Each round represents at certain time the nodes’ 
data, which is equally distributed among rounds 
and accumulated from one round to another. This 
data accumulation simulates the real behavior of 
these nodes, which generate new data over sev-
eral rounds.

Figure 3a depicts the results for use case #1. 
Considering the first node, we can see that its 
accuracy ranges from 73.34 percent in round 1 
to 75.16 percent in round 5 of the self-learning 
setting, and from 74.06 percent in round 1 to 
76.27 percent in round 5 in the case of FL. There 
is slight increase in the accuracy results of both 
approaches since the models corresponding to 
the first node are trained on enough DoS and 
normal samples, which represent around 76 per-
cent of the test set. However, we can see that the 
FL outperforms the self-learning in the five rounds 
since the models are taking advantage of the 
models aggregation. The second node has the 
same interpretation as the first one, with more 
focus on the advantage of FL by reaching 75.06 
percent accuracy in its last round compared to 
70.7 percent for the self-learning. Moving to the 
results analysis of nodes 3 and 4, we can clear-
ly see how the nodes are benefiting from their 
peers’ models. For self-learning, the accuracy 
for node 3 reaches a maximum percentage of 
49.99 percent in round 5, while node 4 reaches 
a maximum value of 52.24 percent. This can be 
explained by the amount of data used for train-
ing and their insignificant representation in the 
test set. However, for the same data distribution, 
node 3 is able to reach 76.06 percent accura-
cy from the second round when applying FL. As 
for node 4, the accuracy reaches 75.63 percent, 
77.57 percent, 80.18 percent, and 82.23 percent 
for rounds 2, 3, 4, and 5, respectively. Based on 
the conducted experiments, we can also achieve 
our objective of showing how close all the accu-
racy values in the last FL round are compared 
to the central model, which is not the case in 
self-learning.

use cAse #2: equAL dAtA dIstrIbutIon oF AttAck tyPes
To validate our solution and achieve our objec-
tives in other scenarios, we studied the case 
where the 4 IDS distributed over the network 
are deployed to examine traffic coming from all 
the attack types. In such a scenario, DoS, Probe, 
U2R, and R2L are equally distributed among the 

4 nodes, then equally distributed from one round 
to another while accumulating data from previous 
rounds. Each distribution contains normal traffic 
equal to the attack samples, not to bias the model 
toward one class. Table 2 shows the number of 
training samples for use case #2. More specifical-
ly, each node has 2296 samples of DoS, 582 sam-
ples of Probe, 49 samples of R2L, two samples of 
U2R, and 2,929 samples of Normal traffic in the 
first round. Then, these samples are accumulated 
at each round from 2 to 5.

TABLE 1. Training data distribution for use case #1.

Round #1 Round #2 Round #3 Round #4 Round #5

Node #1 9,185 Dos + 9,185 N 18,370 Dos + 18,370 N 27,555 Dos + 27,555 N 36,740 Dos + 36,740 N 45,927 Dos + 45,927 N 

Node #2 2,331 P + 2,331 N 4,662 P + 4,662 N 6,993 P + 6,993 N 9,324 P + 9,324 N 11,656 P + 11,656 N 

Node #3 199 R2L newline + 199 N 398 R2L newline + 398 N 597 R2L newline + 597 N 796 R2L newline + 796 N 995 R2L newline + 995 N 

Node #4 10 U2R newline + 10 N 20 U2R newline + 20 N 30 U2R newline + 30 N 40 U2R newline + 40 N 52 U2R newline + 52 N

FIGURE 3. Comparison between centralized, self-learning (on-device), and FL for 
use cases #1, #2 and #3.
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The results for the second use case studied are 
depicted in Fig. 3b. In self-learning, the nodes start 
in the first round with accuracy values ranging 
between 75.74 percent and 78.49 percent. The 
models are afterwards enhanced from one round 
to another until achieving between 79.24 per-
cent and 80.47 percent accuracy. As for FL, the 
models are better and close to the central model 
in the last round where the accuracy ranges 
between 80.45 percent and 81.48 percent. This 
scenario is considered the ideal in terms of close-
ness to the centralized data distribution where 
each node trains on all traffic types and is able to 
predict their behaviors.

use cAse #3: rAndom dAtA dIstrIbutIon oF AttAck tyPes
Another set of experiments has been taken into 
consideration where the samples used in the first 
two scenarios are randomly distributed among 
the nodes and rounds. As we simulate that the 
nodes are generating more data over time, we 
always consider the case of data accumulation 
from previous rounds. Also, we make sure that 
the number of normal and attack samples is con-
sistent to avoid overfitting when building the mod-
els. We show in Table 3 the number of samples 
each node has in the last round, as in all the previ-
ous rounds it is a random distribution as well.

The results shown in Fig. 3c for the use case 
#3 reaffirm the efficiency of the proposed scheme 
with respect to other approaches. First, we can 
see how FL outperforms self-learning for all the 
models that have been built. For example, node 
#3 shows accuracy between 74.33 percent and 
75.27 percent in the self-learning setting, and 
between 74.76 percent and 77.51 percent for 
FL. Moreover, the accuracy achieved in the last 
round of FL training, ranging from 76.84 percent 
to 77.79 percent, is always close to the central-
ized one.

concLusIon And Future work
We proposed in this article a federated machine 
learning based intrusion detection scheme for 
IoT, which leaves data generated on-devices, 
trains their own models in order to maintain pri-
vacy and secure sensed data. To benefit from 
peers’ models, a server aggregates the updates 
locally computed whenever a training round 
in Federated Learning from different devic-
es is performed. The experimental evaluation 
showed that, after the last round of FL, the 
aggregated models have an accuracy fluctu-

ating around 83.09 percent, which refers to a 
centralized model being trained over the entire 
dataset. Moreover, we compared the FL settings 
when sharing the models updates with a serv-
er, and without sharing them in a self-learning 
setting. The results showed that FL outperforms 
self-learning in all training rounds for all the stud-
ied use cases. Accordingly, we can conclude the 
following: (1) federated intrusion detection could 
reach comparable accuracy with respect to the 
centralized approach that has global insights of 
the overall system; (2) the knowledge aggrega-
tion in federated intrusion detection gave the 
latter the advantage to always outperform the 
self-learning approach. On the other hand, the 
selection of clients in FL has significant impact 
on the performance of the system. Devices 
dropout during the process, long response time 
for the upload and update of the models, cli-
ents with less relevant data, and so on, are just 
some of the side effects of existing approaches. 
Addressing these limitations, which drastically 
decrease the global model accuracy, is of great 
importance for future research directions.
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TABLE 2. Training data distribution for use case #2.

Rounds 1 - 5

Nodes 2,296 Dos + 582 Probe +

1 - 4 49 R2L + 2 U2R + 2,929 Normal

TABLE3. Training data distribution in the last round for use case #3.

Round 5

Node 1 12,860 Dos + 3,730 Probe + 269 R2L + 15 U2R + 16,865 normal

Node 2 8,725 Dos + 1,631 Probe + 176 R2L + hspace{1em} 9 U2R + 10,546 normal

Node 3 13,779 Dos + 4,429 Probe + 268 R2L + 17 U2R + 18,484 normal

Node 4 10,563 Dos + 1,866 Probe + 282 R2L + 11 U2R + 12,735 normal
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