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Abstract—As an alternative to centralized systems, which may
prevent data to be stored in a central repository due to its privacy
and/or abundance, federated learning (FL) is nowadays a game
changer addressing both privacy and cooperative learning. It
succeeds in keeping training data on the devices, while sharing
locally computed then globally aggregated models throughout sev-
eral communication rounds. The selection of clients participating
in FL process is currently at complete/quasi randomness. However,
the heterogeneity of the client devices within Internet-of-Things
environment and their limited communication and computation
resources might fail to complete the training task, which may
lead to many discarded learning rounds affecting the model accu-
racy. In this article, we propose FedMCCS, a multicriteria-based
approach for client selection in FL. All of the CPU, memory,
energy, and time are considered for the clients resources to predict
whether they are able to perform the FL task. Particularly, in
each round, the number of clients in FedMCCS is maximized
to the utmost, while considering each client resources and its
capability to successfully train and send the needed updates.
The conducted experiments show that FedMCCS outperforms
the other approaches by: 1) reducing the number of communi-
cation rounds to reach the intended accuracy; 2) maximizing the
number of clients; 3) handling the least number of discarded
rounds; and 4) optimizing the network traffic.

Index Terms—Bilevel optimization, cooperative learning, fed-
erated learning (FL), Internet of Things (IoT), linear regression,
machine learning, multicriteria selection, privacy, resource man-
agement, resource utilization prediction.

I. INTRODUCTION

WHO AMONG us did not allow Internet usage, through
mobile devices, to work its way into their everyday

life? By accessing and sharing data on the go, a world of
information is nowadays generated not only from smartphones,
but also from Internet-of-Things (IoT) devices [1]. Using such
tremendous data to train machine learning models makes the
latter more robust and produces more intelligent applications.

Manuscript received June 16, 2020; revised August 26, 2020; accepted
September 28, 2020. Date of publication October 5, 2020; date of current
version March 5, 2021. This work was supported in part by MITACS, in
part by Ericsson Canada, in part by ÉTS Montreal, and in part by Lebanese
American University. (Corresponding author: Azzam Mourad.)

Sawsan AbdulRahman, Hanine Tout, and Chamseddine Talhi are
with the Department of Software Engineering and IT, École de
Technologie Supérieure, Montreal, QC H3C 1K3, Canada (e-mail:
sawsan.abdul-rahman.1@ens.etsmtl.ca; hanine.tout.1@ens.etsmtl.ca;
chamseddine.talhi@etsmtl.ca).

Azzam Mourad is with the Department of Computer Science and
Mathematics, Lebanese American University, Beirut 961, Lebanon (e-mail:
azzam.mourad@lau.edu.lb).

Digital Object Identifier 10.1109/JIOT.2020.3028742

However, this requires storing the data in a centralized entity,
which entails the following issues: 1) compromise the pri-
vacy of shared data; 2) prevent some users from sharing their
personal and useful data; and 3) entail high latency, etc.

As a solution, Google coined the term federated learning
(FL) [2] to take us a step further in preserving privacy and
addressing the aforementioned problems. It is a decentralized
approach that distributes the training tasks on client devices to
keep their private data locally. The FL life cycle is divided into
several communication rounds, which are concluded once the
model converges, or in other words, a desired test-set accuracy
is reached. In each round, the server first communicates the
global model parameters with some clients selected at random.
Then, the data, that is supposed to be sent to the server in the
typical approaches, remains on the devices, and is used for
training. To benefit from peers’ models, the locally computed
updates are therefore shared with the server for aggregation.

From one round to another, different set of clients are
selected at complete [2] or quasi [3] randomness. When the
selection comes to some clients with limited resources, like
IoT devices, not only longer processing time is engaged by the
client, but also failure in completing the training task might
occur, and accordingly affect the model accuracy. Moreover,
since FL takes place when the devices are idle, the location
of the clients highly affects their participation in the ongoing
round. It has been reported [4] that the number of clients par-
ticipating in FL highly depends on the time of day, where at
night time it increases by 4× compared to day time. Therefore,
the random selection of clients leads to less number of updates
sent by the clients, yet some FL rounds will be discarded.
Furthermore, training data set represents data generated by the
clients based on their behavior. Yet, imbalanced class distribu-
tion is a common machine learning problem, where samples
belonging to one class dominates those belonging to another
class. If data of the selected clients in FL belongs to one
class, FL process will not be sufficient enough to build robust
models. To the best of our knowledge, none of the current
approaches has addressed optimizing FL client selection while
considering location, resources and survivability of the devices
chosen for training the models.

In this article, we tackle the aforementioned limitations
by proposing FedMCCS, a multicriteria-based client selection
approach for FL, formulated as bilevel optimization problem
while considering availability of resources, communications
overhead and imbalanced distribution of data. First, stratified-
based sampling is used to filter the clients located at same
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time zone. This engages selecting homogeneous clients all
able to be contacted for training requests. Next, communica-
tion with the filtered clients will be initiated to acquire about
their resources utilized in the prior FL rounds. According
to the responses, a linear regression-based algorithm predicts
whether the client has enough CPU, memory, and energy to
perform the training task. Estimation time for the download,
update, and upload of the model is calculated and compared
to the threshold for receiving all the updates defined by the
server. Moreover, to handle the imbalanced distribution of
the data set, we prioritize the clients with highest event rate
according to the representation of data labeled as the minor-
ity class of the studied use case. Using all above metrics,
our approach is able to maximize the number of selected
clients, aggregate more updates per round and minimize the
total communication rounds. We base our goal of maximiz-
ing the clients on the results obtained by Google in [2],
showing that the desired accuracy is converged faster when
more updates are aggregated per round. Moreover, in typi-
cal FL, the aim is to select a fraction of clients. However,
some might not be able to respond, or even dropout during
the process due to their limited connectivity and/or resources,
and hence, a smaller number of updates will be received.
Therefore, in our proposition, we aim the maximize such
fraction of clients with respect to the aforementioned crite-
ria. In the following, we provide a summary of this article
contributions.

1) Stratified-based sampling of clients that allows to form
homogeneous group of clients based on their location
in order to filter the ones able to respond to the server
request.

2) Novel multicriteria-based optimization model that allows
to maximize the number of FL clients with sufficient
resources and time to complete the training tasks without
dropout. Our scheme provides also linear regression-
based mechanism for predicting the utilization of the
CPU, Memory and Energy of the ongoing FL round in
addition to the predicted time for the download, update
and upload of the model parameters.

3) Optimal balanced distribution of the training set to
optimize the client selection by prioritizing the available
clients for training with the highest event rates.

4) Efficient Approach for Intrusion Detection System: We
took a case study of intrusion detection system to eval-
uate our approach, where NSL-KDD [5], a publicly
available data set has been used. The experiments show,
compared to two other baselines: a) a reduction of
communication rounds by 8.0 − 8.4×; b) more client
selection per round; c) significant decrease in the dis-
carded rounds; and d) minimization of the network
overhead.

The remainder of this article is organized as follows.
In Section II, we present some relevant existing works. In
Section III, we elaborate more on how FL works, what are
the existing protocols for client selection, and the problems
entailed in the practical FL. Section IV introduces the archi-
tecture and protocol of our framework. Next, our maximization
problem and proposed model are presented in Section V.

Finally, we show the evaluation methodology and experimental
results in Sections VI and VII, respectively, followed by a
conclusion in Section VIII.

II. RELATED WORK

Once Google invented FL, different related aspects have
been advanced in the field of models aggregation [2], [6], [7],
applications [8]–[10], privacy [11]–[13], security [14]–[16],
etc. Since the main objective of efficiently selecting clients to
participate in the FL rounds is to reduce the communication
cost, we study first the state-of-the-art in this field. In what
follows, we emphasize on the communications cost aspect in
FL and discuss the relevant existing works, while the rest of
the aspects are out of the scope of this work.

Konecný et al. [17] investigated two methods to mini-
mize the communication cost. Structured updates is the first
proposed method, which restricts the model updates to be
within a prespecified structure. The latter necessitates build-
ing two matrices for the update, where only the needed
matrix or nonzero values should be sent by the client. As for
Sketched updates, the second proposed method, the updates to
be communicated are first computed, then compressed using
subsampling, probabilistic quantization, and random rotation
techniques. The extended FL proposed in [18] works as
follows.

1) The size of the global model is reduced using Federated
Dropout technique, where a submodel with less param-
eters is constructed.

2) The resulting submodel is lossily compressed on the
server side and sent to the clients.

3) The latter decompress the model and perform the train-
ing task.

4) The generated updates are as well compressed and sent
to the server.

5) The server decompresses to do the aggregation.
The work in [19] meets the requirements of FL from

a communication-efficiency perspective: by compressing not
only the upstream communication but also the downstream
one, being robust to noniid and unbalanced data with small
batch sizes, and by handling big number of clients as well as
their partial participation. The proposed compression methods
are performed via sparsification, optimal Golomb encoding,
error accumulation, and ternarization. An enhanced FL pro-
tocol has been proposed in [20]. First, the communication
cost is minimized by reducing the number of parameters
shared between the server and the clients to be trained and
updated. This is done by separating shallow layers from deep
layers in a deep neural network, and communicating more fre-
quently the shallow layers related parameters as their features
are more important for the central model. Another proposi-
tion has been added to this work called Temporally Weighted
Aggregation. Rather than considering the recent learning mod-
els only, the proposed aggregation method takes into account
the local models of each client trained in all previous rounds.
Instead of using the standard global averaging for the aggre-
gation method, the work in [21] proposed an Adam-based
per-coordinate averaging strategy. The latter is developed and
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tested for wake word detection and was able to reduce the
communication rounds to reach a target recall value. As a
large number of random clients are selected to train the param-
eters of the global model in FL, some yet many updates,
that are irrelevant, will be sent to the server. Therefore, a
communication-mitigated FL has been proposed in [22]. In
each round, how relevant the client’s update is to the global
model, it will be either communicated or not. The use of FL
in unmanned aerial vehicles (UAVs) has also been proposed
in [23]. To reduce signaling delays caused by the commu-
nication with remote node in large-scale UAV networks, the
authors proposed on-device ML, particularly FL, where UAVs
storing different tasks work in a distributed and collabora-
tive fashion. When, in such proposition, radio resources are
allocated on many UAVs, wireless congestion and latency are
reduced.

These approaches were able to reduce the communication
cost by sending nonzero values of the update matrix [17],
compressing the upstream and downstream communication
updates [18], [19], updating more frequently the shallow layers
related parameters [20], modifying the averaging method [21],
sharing the relevant updates only [22], and collaboratively allo-
cating radio resources in UAVs [23]. While not considering
the devices resources and their capabilities to finish learning
and communicating their updates, such practices still result
in many discarded FL rounds. They also risk wasting signif-
icant device resources as the successfully learnt models will
be dropped in a discarded round.

Another line of work focused on the efficiency of FL
when selecting the clients under realistic wireless network.
Chen et al. [24] shed light on how wireless factors affect FL
performance in practice. In this context, FL might come across
training errors due to the unreliability of the wireless channels,
in addition to the wireless resource limitations, mainly in the
power and bandwidth. To address such limitation, the authors
proposed novel FL-based framework to minimize FL loss
function under wireless networking metrics. Yang et al. [25]
proposed a framework to study how FL algorithms converge
in large-scale wireless networks. Besides the tractable expres-
sions that are derived for the convergence rate, the latter is
analyzed and compared using three different scheduling poli-
cies: 1) round robin; 2) random scheduling; and 3) proportional
fair. Chen et al. [26] focused on how client selection mecha-
nism can highly affect FL convergence time and performance.
They proposed a scheme where clients with high-quality mod-
els are most likely to be connected to the base station (BS),
which acts as a server in typical FL. Moreover, the conver-
gence time is reduced by allowing BS, using artificial neural
networks, to deal with the clients whose local models param-
eters have some relationship. Ren et al. [27] proposed a
scheduling policy in order not to bias gradient aggregation.
First, one client is scheduled per round and the importance
of its model updates are measured and analyzed using gra-
dient convergence. Then, multiple clients are scheduling in a
proposed probabilistic scheduling framework.

While the aforementioned wireless network-based
approaches focus on the resource constrained wireless
networks and choosing only the clients generating high-quality

Protocol 1 FL. K Represents the Number of Participants in
the Protocol. C ∈ (0, 1] is a Hyperparameter Determining the
Fraction of Clients Involved in Each Round
1: Initialization : The server first creates a generic
model either randomly or pretrained using public data.
2: Client Selection : The server selects random
�K × C� clients.
3: Distribution : The server disseminates the global
model parameters to the selected clients.
4: Update and Upload : Selected clients use their
local data to update the shared model and upload the new
model parameters to the server.
5: Aggregation : The server performs an averaging pro-
cess on the updated parameters to formulate an enhanced
model.
6: Steps 2 till 5 are repeated until achieving a desired
performance of the model.

local models to reduce communication, we take another direc-
tion by analyzing the resources inside the IoT devices and
predicting their capabilities of completing the training task.

On the other hand, none of the current approaches has
considered the location and resources of the clients in the
selection step. In this article, we first filter the clients based
on their location, then we formulate a client selection mecha-
nism that predicts the clients able to efficiently participate in
the FL rounds considering their heterogeneous resources. The
proposed protocol is able not only to reduce the communica-
tion overhead, but also to make full advantage of the learnt
models, and reduce the number of discarded rounds.

III. FEDERATED LEARNING AND PROBLEM ILLUSTRATION

In this section, we describe the existing protocols of FL,
followed by the encountered problems in the current and
practical FL.

A. Existing Federated Learning

The sensitivity of the wealth of data generated by the
devices is preventing the users from storing their data in a
centralized entity. If all generated data is gathered, more intel-
ligent applications would have been modeled. To achieve such
tradeoff between privacy and intelligence, FL [2] was proposed
by locally training data and sharing machine learning mod-
els with a server. Protocol 1 describes FL steps. Initially, the
server generates a generic model for a certain task, then selects
random clients to communicate the model parameters with.
The number of clients selected is equal to �K × C�, where K
is the total number of clients, and C, a hyperparameter that
defines the fraction of clients to be involved in each round. In
the Update and Upload step, each selected client trains
the model using its local data and shares the new generated
parameters with the server. Once the server receives the clients
updates, it starts averaging them to get an enhanced model. In
case no enough updates are received and a delay is reported,
the server abandons the round. At the end, the steps are iterated
until achieving a desired model performance.

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 06:58:49 UTC from IEEE Xplore.  Restrictions apply. 



4726 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 6, MARCH 15, 2021

Fig. 1. High-level architecture of the proposed framework.

Optimizing resource-constrained devices has attracted many
researchers [28]–[30]. In the context of FL, the work in [3]
has proposed a client selection-based FL solution to effi-
ciently manage the clients involved in the learning rounds.
The authors implement Protocol 2, where the mobile edge
computing (MEC) operator requests resource information from
random clients, rather than directly sending them the model
parameters. In the next step, Client Selection, the MEC
operator maximizes the �K ×C� clients to be participating in
the training task for the current round. The selection depends
on the time needed to distribute the parameters over the clients,
in addition to the time taken by each client to upload and
update the model. The maximization is hence achieved with
the clients consuming the least time under a certain threshold.
Next, the server disseminates the model parameters only to the
selected clients to update the shared model. After the aggrega-
tion, the server again selects, from one round to another, new
set of clients until achieving a desired performance, or when
a new defined threshold is met.

B. Problems Entailed in Current Federated Learning

Existing protocols of FL, especially when applied in the
IoT environment [3], [31], [32], engender many problems in
the local training phase. The clients are very heterogeneous in
nature. They have different communication and computation
resources, variant amount of generated data, and different time
zones. When selected for training, the devices have to com-
plete the process and sends the response within a reasonable
time. In case of failure, whether due to unreliable network con-
nectivity, or the waiting time for a device to be idle to start the
training, the server has to abandon the round. Such scenario
wastes the utilized resources of all participating clients in the
current round. Moreover, some devices might fail to perform
some training tasks if they have large amount of data, and/or
low computation resources. This affects the devices by caus-
ing system crash, and consequently increasing the number of
communication rounds needed to reach a target accuracy for
the model.

Protocol 2 FL With Client Selection. K Represents the
Number of Participants in the Protocol. C ∈ (0, 1] is
a Hyperparameter Determining the Fraction of Clients to
Answer the Resource Request in Each Round
1: Initialization in Protocol 1.
2: Resource Request : The MEC operator requests
resource information from �K × C� random clients.
3: Client Selection : Based on their responses, the
MEC operator selects the clients that are capable of performing
the remaining steps within a certain deadline.
4: Distribution : The server disseminates the global
model parameters to the selected clients.
5: Scheduled Update and Upload : Selected
clients use their local data to update the shared model and
upload the new model parameters to the server, using their
allocated RBs.
6: Aggregation in Protocol 1.
7: Steps 2 till 5 are repeated until achieving a desired
performance of the model or when the final deadline is met.

IV. FEDMCCS: ARCHITECTURE AND PROTOCOL

Fig. 1 shows the high-level architecture of our proposed FL-
based framework. Our solution encompasses two entities; the
service provider and IoT devices, both communicating using
any communication infrastructure. While the devices act as
clients, the service provider can offer many ML-based services
for different applications, such as image recognition, intrusion
detection, etc. In what follows, we describe the components
of each entity.

1) Req/Resp Handler: It is responsible of handling the
exchanged request and response messages between the
server and the selected devices.

2) Generic Module Generator: It is responsible of building
a global ML model to be communicated and used by the
clients.
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3) Client Filtering Engine: It is responsible of selecting
homogeneous rather than random group of clients. The
role of this component is detailed next, when describing
the protocol.

4) Multicriteria-Based Client Selection Engine: It is the
main module in our system. It allows to select the
maximum number of available and performant clients
(colored devices in the figure) per round in order to
aggregate their updates. The proposed selection algo-
rithm employs multiple criteria (time, CPU, memory,
and energy) to achieve the maximization goal.

5) Aggregator: It is responsible of creating much improved
update of the model using a federated average function.

6) Profiler: It is responsible of both monitoring the utilized
resources while training a model, and creating resource
profile for the device.

7) Machine Learning Engine: It is responsible of perform-
ing the training task using the local data stored on the
device.

Our proposed solution, mainly for IoT system, is a
multicriteria-based approach for client selection. It maximizes
the number of selected clients capable of providing a highest
possible performance when aggregating their models among
devices with limited resources. Protocol 3 shows the steps of
the proposed FL and reflects the actual interactions among the
components described in the architecture.

1) Initialization: The server generates the global model
either randomly or pretrained using public data.

2) Client Filtering: In the existing FL protocols, the selec-
tion of clients from one round to another is based on
simple sampling, where all clients are equally likely
to be chosen. This can lead to undesirable exchanged
messages, the selection of irrelevant clients, and less reli-
able responses, which affect the model performance. For
instance, significant delay can be entailed when select-
ing subsets of clients located at different time zone. It
has been reported in [4] that the clients when at night
are involved in the FL rounds more than when at day.
Rather than selecting clients entirely at random, we
leverage stratified sampling [33], which classifies the
population into subgroups known as strata. The latter
groups homogeneous users sharing similar characteris-
tics together. Metadata about the clients is often already
stored on the server or even can be shared with the lat-
ter. In our proposition, we assign clients to strata based
on their region metadata.

3) Resource Request: From only the filtered clients, the
server requests their resources information (e.g., the
size of data they have, their historical data for the past
training tasks, etc.).

4) Multicriteria Client Selection: The server analyzes the
clients responses to select the best set able to partic-
ipate in the coming learning rounds. How to estimate
the clients resources, and which clients to select are
presented in details in Section V.

5) Distribution: The server distributes the model parame-
ters to the selected clients.

Protocol 3 FL With Multicriteria Client Selection. K
Represents the Number of Participants in the Protocol. C ∈
(0, 1] is a Hyperparameter Determining the Fraction of Clients
to Select, After Being Filtered Based on Their Metadata, and
After Analyzing Their Resources
1: Initialization in Protocol 1.
2: Client Filtering : The server applies Stratified-
based filtering to select clients according to their metadata,
avoiding communications with irrelevant clients.
3: Resource Request : The server requests resource
information from the filtered clients.
4: Multicriteria Client Selection : Based on
the clients responses, the server uses Multicriteria selection
approach to determine a maximum of �K × C� clients to
participate in the remaining steps.
5: Distribution : The server disseminates the global
model parameters to the selected clients.
6: Update and Upload in Protocol 1.
7: Aggregation : The server averages the parameters,
when more than 70% of the requested updates are received.
8: All steps but Initialization are iterated as in
Protocol 2.

6) Update and Upload: The clients update and upload the
new model parameters.

7) Aggregation: The constrained resources of the devices
might result in many systems crash. Therefore, we com-
pensate for the devices dropout by handling 30% of
unresponsive selected clients at each round, following
similar settlement approach as in [4]. When more than
30% of the updates are not received, the FL round
is considered discarded. Otherwise, the aggregation is
successfully performed.

8) A loop over the previous steps is defined until the desired
model performance is achieved.

V. MULTICRITERIA-BASED FL CLIENT

SELECTION MODEL

A. Problem Definition

We address the following problem: considering the het-
erogeneity of the clients and their limited computation and
communication resources, what is the maximum number of
those that can complete FL rounds without system crash, while
maintaining high-performance FL model?

Formally, let X = (X1, X2, . . . , XK) be the set of all clients,
each having a set of m pairs {n, l} where n is a network
related data and l ∈ {normal, abnormal} its label. First, find
Xf = (Xf1 , Xf2 , . . . , Xfi), where Xf ⊆ X, representing the fil-
tered clients based on the stratified method to classify clients
in homogeneous groups, which better represents the whole set
(step 2, Protocol 3). Next, find the maximized set of clients to
be selected in the multicriteria client selection
(step 4, Protocol 3) represented by XS = (XS1 , XS2 , . . . , XSj),
where XS ⊆ Xf and j ≤ �K × C�.
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B. Problem Formulation

We formulate our problem as a bilevel maximization with
knapsack and other constraints as follows:

max
XS
|XS|

subject to
⎧
⎨

⎩

∀Xf i
z=1

∑
Util

Xfz
r∈{CPU,Memory,Energy} < Budget

Xfz
r [co1]

∀Xf i
z=1

∑(
T

Xfz
d + Util

Xfz
r=Tud

+ T
Xfz
ul

)
< T[co2]

subject to

max ERX
f i
z=1
=

[ ∣
∣Xfz .lA

∣
∣

∣
∣Xfz .lA

∣
∣+ ∣

∣Xfz .lN
∣
∣
× 100

]

[co3]. (1)

The aim is to maximize the set of selected clients XS under
three constraints.

1) co1: The limited budget for the resources utiliza-
tion of each device type, in a way not to cause
dropouts. We define dynamic budgets based on the
resources types per device type. Such budget, which
represents the maximum on-device task consumption,
allows to complete the training process until completion.
Util

Xfz
r∈{CPU,Memory,Energy} denotes the predicted utiliza-

tion of the resources r for the client Xfz when training
a model, where r represents the CPU, memory, or
energy. Budget

Xfz
r is the resource budget per device

type.
2) co2: The defined threshold T not to be exceeded

when downloading, updating, and uploading a model.
Utilr=Tud represents the predicted utilization of the
update time resource when training a model. Whereas,
TXc

d and TXc
ul denote, respectively, the time required to

download and upload the model by a client Xc.
3) co3: The selection of the needed number of clients based

on their event rate. The clients have nonindependent and
nonidentically distributed data set, where the latter is
generated depending on each client behavior and usage
of the application related to the ML model. Therefore,
some clients might produce models with imbalanced
classification, with a majority of the samples belong-
ing to only one class. We denote by ER the event rate
of the client data set, showing the representation of the
minority class distribution, whereas Xfz .lA and Xfz .lN rep-
resent, respectively, the abnormal and normal samples of
the client Xfz .

Theorem 1: Our multicriteria FL client selection problem is
NP-hard.

Our optimization problem is a bilevel maximization problem
with a knapsack constraint [34]. The objective is to maximize
the number of clients to be selected |XS| subject to a defined
threshold T that the download, update, and upload time of the
model taken by all XS cannot exceed. Another constraint in the
maximization problem is the resources utilization of the clients
that should be within a limited budget. Those two constraints
are applied subject to the type of the clients data sets. Since our
problem is a bilevel maximization with a knapsack constraint,
hence it is NP-hard [35], [36].

Proof: Our formulated maximization problem can reduce
to the classical knapsack problem where the aim is to deter-
mine the items to be included in a sack in a way that the total
weight is less than or equal to a specific limit and the total
value of the selected items is maximized.

Now given an instance of the client selection problem, we
transform it into an instance of the knapsack problem as we
defined as follows.

1) The set |XS| as the sack in the knapsack problem.
2) The clients to be selected are the items in the knapsack

problem.
3) The clients’ weights through their resources

(Util
Xfz
r∈{CPU,Memory,Energy}, which should be < Budget

Xfz
r )

as well as the total time needed to download, update,
and upload the model (

∑
(T

Xfz
d + Util

Xfz
r=Tud

+ T
Xfz
ul )

which should be < T), whereas the clients values as
their event rates (ERX

f i
z=1

). This is exactly as the items

in knapsack which have given weights and values.
This reduction yields our client selection problem is

NP-hard.

C. Heuristic-Based on Greedy Algorithm for Client Selection

Solving (1) requires combinatorial optimization. We pro-
pose a heuristic based on greedy algorithm [3], described in
what follows.

After filtering the clients (in step 2, Protocol 3), the server
requests from each client in the filtered set Xf its resource
information. This includes the size of data samples relevant
to the training task (e.g., the number of samples |lN | : l ∈
{normal} and |lA| : l ∈ {abnormal} in the data set), in addition
to the historical resource data set collected during previous
FL participations of the client (e.g., for each size of trained
data its utilized resources, mainly the training/update time,
CPU, memory, and energy denoted by UtilXc

r ). After receiv-
ing the clients responses, the server starts its client selection
algorithm.

First, one of the most common machine learning prob-
lems is the imbalanced class distribution, where the volume
of samples belonging to one class dominates the volume of
those belonging to another class. Thus, the predictive detec-
tion model could be inaccurate and biased with the imbalanced
classification. Duan et al. [37] showed significant decrease in
the global model accuracy when the training data is imbal-
anced. As a solution, the authors proposed data augmentation
strategy for the minority classes. Moreover, the use of media-
tors between the clients and the server is introduced in order to
rebalance training and achieve a partial equilibrium. In other
words, a mediator selects the clients that make the distributed
data close to a uniform distribution. However, such approach
requires more traffic with time overhead in each communi-
cation round compared to the typical FL. Another work [38]
has been advanced studying the issue of fairness in FL. The
proposed framework is based on minimax optimization, which
prevents data overfitting. While such approach optimizes the
centralized model and mitigates bias in the training procedure
rather than training data, we focus in our work on the clients
themselves to ensure utmost uniform distribution. Particularly,

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 06:58:49 UTC from IEEE Xplore.  Restrictions apply. 



ABDULRAHMAN et al.: FedMCCS: MULTICRITERIA CLIENT SELECTION MODEL FOR OPTIMAL IoT FEDERATED LEARNING 4729

we prioritize the clients having highest event rate, which leads
to less bias, even though they have the largest number of
abnormal samples. If, for instance, client A has 4000 samples,
among which 70 are abnormal, and another client B has 200
samples, among which 50 are abnormal, we prioritize client B
since the event rate of its data equals to 25% is much higher
than that of Client A with only 1.75%.

Next, from the prioritized clients, we maximize the num-
ber of clients to be selected based on their resources. Hence,
avoid opting clients incapable of completing the training
phases, which can corrupt the ongoing FL rounds or entail
late replies. This is technically formulated by proposing a
prediction method for the resource utilization based on lin-
ear regression [39]. It estimates the resources utilization UtilXc

r
for the next training round for a given client according to the
history of the past utilized resources. The proposed method,
RUPred-LR, is presented in details in the next Section V-D,
and its pseudocode algorithm is given in Algorithm 2. Based
on the predicted Utilr∈{CPU,Memory,Energy}, each client should
be able to perform the training task under a fixed resource bud-
get, to avoid over-loaded devices. We use Budget

Xfz
r to denote

the budget of type-r resource for each device type. Besides
Utilr∈{CPU,Memory,Energy}, we estimate the time needed by the
clients to download, update, and upload a model. Those able
to complete the process within a defined threshold T will be
selected, which maximizes the expected benefit. TXc

ud is esti-
mated using RUPred-LR, whereas TXc

d and TXc
ul are estimated

using

Tx∈{d,ul} = |modelPar|
B

+ latency (2)

where modelPar and B represent the model parameters size
and the network bandwidth, respectively.

The full pseudocode of the multicriteria-based client selec-
tion is given in Algorithm 1. The client having maximum ER
is first chosen (line 3 in Algorithm 1), then is added to XS

if its resources required for the training task are sufficient
(lines 5 and 6 in Algorithm 1). Besides handling the imbal-
anced class distribution problem, the selection model based
on the proposed ER reduces the algorithm complexity: Instead
of predicting the resources utilization for all Xf clients, then
selecting �K × C� with highest event rate, the complexity of
the algorithm is reduced by only performing the prediction for
the clients with highest ER until selecting �K×C�, or until no
more clients are available. The order of the algorithm is hence
O(n|Xf ||XS|). Note that in the proposed client selection algo-
rithm, the extra overhead lies in both predicting the resources
utilization of the clients and estimating whether such resources
are under the specified budgets in order to be selected. Since
these additional calculations are performed on the FL server
and we focus in this work on providing low computation bur-
den for the devices themselves, we tolerate such computational
cost in resource-constrained IoT environments.

D. RUPred-LR—Resource Utilization Prediction Based on
Linear Regression

To predict the future resources utilization [40], [41] for
a particular training task, we studied the variation of the

Algorithm 1 Multicriteria Client Selection in Protocol 3
Input: {Xf :∀Xf i

z=1
, ∃(|lN |, |lA|, and History_Xfz)}, where:

• History_Xfz =
⋃n

i=1{xi, yi = Utilr}
• xi is the data set size previously trained by Xz

• Utilr is the resource utilization to train xi data sam-
ples, where r ∈ {CPU, Memory, Energy, TXz

ud }
• n is the size of historical resource data set collected

during FL participation of Xz

Output: The set of selected clients XS

1: Initialize XS = ∅

2: while Xf 
= ∅ and |XS| 
= �K × C� do

3: Xfz ← argmaxXfk∈Xf

[ |Xfk .lA|
|Xfk .lA|+|Xfk .lN | × 100

]

4: remove Xfz from Xf

5: if sufficientResources(History_Xfz) then
6: add Xfz to XS

7: end if
8: end while
9: Return the set XS

sufficientResources(History_Xfz)

(UtilCPU < Budget
Xfz
CPU &&

UtilMemory < Budget
Xfz
Memory &&

UtilEnergy < Budget
Xfz
Energy &&

[Td + UtilTud + Tul] < T) ? true:false;

Fig. 2. Resources utilization variation in terms of data set size.

resource utilization with respect to the data set size before the
system crashes. In these experiments, we examined the train-
ing time, along with the utilized CPU, Memory, and Energy for
Raspberry Pi devices. The latter are characterized by quad-core
processor of 1.2 GHz, 1 GB of RAM, 16 GB of storage, and
Rasberian Debian OS. The results in Fig. 2, which are aver-
aged from ten devices, reveal linear relation with a negligible
error for each of the studied parameters when the devices are
active and performing the training task. The linear modeling
continues to be observed as long as we increase the data set
size until reaching 2000 samples exclusively. Once the model
is fed with 2000 training set samples, the devices shutdown,
which explains the falling linear-based resource utilization

Authorized licensed use limited to: Bibliothèque ÉTS. Downloaded on June 27,2021 at 06:58:49 UTC from IEEE Xplore.  Restrictions apply. 



4730 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 6, MARCH 15, 2021

variation. Hence, to efficiently use the devices resources and
avoid system crash, which corrupts FL round, we propose new
method based on linear regression [39] to predict resource uti-
lization. Its full pseudocode is given in Algorithm 2. According
to the history of the clients in the past FL rounds, the server
estimates a prediction function for each of the training time,
CPU, Memory, and Energy. This function, presented in (3),
shows linear relationship between the input variable x and the
output variable yr. We denote by x the data set size of the
client and by yr the device resource utilization Utilr, where r
represents the training time, CPU, Memory, or Energy

Utilr∈{Tud,CPU,Memory,Energy} = yr = αrx+ βr (3)

where αr and βr are the regression coefficients of the model.
To measure the goodness of fit - in other words, how well

the resource utilization is predicted, we get the residual εr

in (4) for each of the n historical records. The smaller the
residuals, the better the fit

εri =
∣
∣yri − ŷri

∣
∣ (4)

where yri and ŷri are the real and the predicted utilization
values, respectively.

The objective is to obtain the regression coefficients by
minimizing the residuals leading to the best fit line. One
of the common methods for the residual minimization is
least-squares regression [39], which finds αr and βr with the
minimal possible value of the sum of the squared deviations
over the n records. Thus, least-squares regression tends to
minimize the following function:

S(αr, βr) =
n∑

i=1

ε2
ri
=

n∑

i=1

(
yri − α̂rxi − β̂r

)2
(5)

where α̂r and β̂r are the least-squares estimators of αr and βr.
The minimization is computed by taking partial derivatives

of S with respect to α̂r and β̂r, and assigning zero to each
partial derivative as follows:

∂S

∂βr
= −2

n∑

i=1

(
yri − α̂rxi − β̂r

)
= 0 (6)

∂S

∂αr
= −2

n∑

i=1

(
yri − α̂rxi − β̂r

)
= 0. (7)

Solving (6) and (7) yields the following least-squares
estimators:

α̂r =
∑n

i=1 yri xi − 1
n

(∑n
i=1 yri

)(∑n
i=1 xi

)

∑n
i=1 x2

i − 1
n

(∑n
i=1 xi

)2

=
∑n

i=1(xi − x̄)
(
yri − ȳr

)

∑n
i=1(xi − x̄)2

(8)

β̂r = 1

n

n∑

i=1

yri −
α̂r

n

n∑

i=1

xi = ȳr − α̂rx̄ (9)

where x̄ and ȳr are the means of xi and yri observations,
respectively.

Algorithm 2 RUPred-LR: Resource Utilization Prediction
Based on Linear Regression

Input: History_Xz =⋃n
i=1{xi, yri = Utilr}

Output: Predicted Utilr

1: x̄ = Mean of {x1, x2, ..., xn}
2: ȳr = Mean of {yr1 , yr2 , ..., yrn}
3: Initialize l = 0, m = 0
4: for i = 1 to n do
5: l + = (xi − x̄)(yri − ȳr)

6: m + = (xi − x̄)2

7: end for
8: α̂r = l

m � Equation (8)
9: β̂r = ȳr − α̂x̄ � Equation (9)

10: Predicted Utilr = α̂x+ β̂ � Equation (3)
11: Return Predicted Utilr

Fig. 3. Portion of the NSL-KDD data set.

VI. EVALUATION METHODOLOGY

In this section, we provide brief description about the used
data set, the FL setup, how data is distributed over clients,
the architecture of the global model, the baseline approaches,
an example scenario of how the clients are selected, and the
evaluation criteria.

A. About the Data Set

As a case study, we are interested in network intru-
sion detection, where good models can distinguish between
good/normal connections and intrusions/attacks. For this task,
we adopt the publicily available NSL-KDD [5] data set, which
consists of 125 973 training and 22 544 testing samples, with
41 features, such as “duration,” “protocol_type,” “src_bytes,”
“dst_bytes,” etc. Fig. 3 shows a snippet of the data set, where
data is classified either as normal or as anomaly. In the typical
FL scenarios, labeling the data set could be performed natu-
rally from user interaction. While such technique can be easily
done for image classification or language models, it is not the
case for intrusion detection system. Since the latter is our case
study, we’ve distributed the already labeled data on the clients.
However, we can consider some exiting approaches [42]–[44]
or frameworks [45], [46] for future directions when
dealing with new data set in order to automatically
label it.
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Fig. 4. How the clients are selected in the three different approaches based on their metrics when �K × C� = 2.

B. Federated Learning Setup

We implemented FL and the proposed Client Selection algo-
rithm using, on the server side, flask1 and flask_socketio2

libraries and, on the client side, socketIO-client.3 Regarding
the implementation of the deep neural network and its param-
eters, we used Keras4 with TensorFlow backend. In these
experiments, the clients are Raspberry Pi devices, having quad-
core processor of 1.2 GHz, 1 GB of RAM, 16 GB of storage,
and Rasberian Debian OS.

C. Data Distribution Over Clients

We study the following partitioning of NSL-KDD data set:
First, we set K to 100 clients. Then, we assign between
100 and 2500 samples of the training set to each client.
Since we are investigating binary classification problem, the
training samples are labeled as either normal or abnormal.
However, the latter was initially classified into DoS, Probe,
R2L and U2R attacks with 45927, 11656, 995, and 52 sam-
ples, respectively. With few training sets available for the R2L
and U2R-based attacks, small number of clients are assigned
with such type of data, while the majority have a combina-
tion of DoS and Probe attacks. We consider that this partition
follows a non-iid data distribution fashion, as different clients
have different data partition. As for the testing set, it is used
on the server side to measure the classification performances.
In each FL round, C is set to 0.1 as in [2] and [3], where a
maximum of ten clients may be selected.

1https://www.fullstackpython.com/flask.html
2https://flask-socketio.readthedocs.io/en/latest/
3https://github.com/socketio/socket.io-client
4https://keras.io/

D. Global Model Architecture

Before generating the global model and sharing it among
the clients, we have built a centralized model, where the
full training set has been used. We kept tuning the hyper-
parameters until the test model didn’t improve anymore. Such
best network structure was considered as the global model,
where a deep neural network [47] of three fully connected
layers are used as follows: 1) 288 units with tanh activation;
2) 120 units activated by ReLu; and 3) a final sigmoid output
layer. This results in a total of 70 058 model parameters. Using
such architecture, the selected clients train the model in each
round with ten mini-batches and five epochs.

E. Baseline Approaches

We compared our approach, FedMCCS, to the following
two baselines.

1) The original FL approach [2] presented in Protocol 1,
where �K × C� clients are randomly selected by the
server to participate in the FL rounds. We refer to this
baseline as VanillaFL.

2) FL with client selection [3] presented in Protocol 2,
where random �K × C� clients are first selected by the
server to share their resources. The latter, representing
mainly the time needed to obtain clients’ updates, is used
for client selection. We refer to this baseline as FedCS.

For all the conducted experiments, we ran each of the three
approaches five times and considered their averages in order
to do the analysis and the comparison.

F. Client Selection Example Scenario

Based on the considered metrics in each approach, Fig. 4
shows how the clients are selected when, for instance, K = 6,
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Fig. 5. Test accuracy versus communication rounds.

and �K × C� = 2. The first column indicates the real devices
behavior, where 3 out of 6 clients are able to successfully finish
their training task. When applying the Client Selection
step in FL, FedMCCS starts with the stratified method to fil-
ter the clients based on their zone, then requests from the
clients their resources for the selection prediction. By choos-
ing C1 and C4 for training, FedMCCS succeeds in receiving
the needed model parameters in the ongoing FL round. As for
VanillaFL, the complete random selection of clients is the rule
of luck in receiving a number of updates close to �K × C�.
For instance, if C2 and C5 are selected, only C5 fails to send
its updates to the server. Regarding FedCS approach, it first
selects random �K × C� clients. If the ones selected are C3
and C6, then its selection algorithm will decide to continue
only with C6, since C3 has a time constraint.

G. Evaluation Criteria

The test data set that we are dealing with is somehow bal-
anced, with a distribution of 57% and 43% for the abnormal
and normal samples, respectively. Therefore, we rely on the
accuracy only rather than other metrics, e.g., F1 score and
recall rates to evaluate and compare the models performance.
Our FedMCCS model, in addition to VanillaFL and FedCS,
are evaluated to answer the following questions.

1) How many communication rounds are needed to achieve
a desired accuracy?

2) How many selected clients are able to finish training,
without dropping out?

3) How many FL rounds are discarded in the process?
4) How the network traffic is varying during the process?

VII. EXPERIMENTAL RESULTS

In this section, we discuss the results of the conducted
experiments.

A. Test Accuracy Throughout Communication Rounds

We start by answering question 1: “How many communi-
cation rounds are needed to achieve a desired accuracy?” The
goal is to minimize the number since the upload bandwidth
is typically limited and the clients are expected to participate
in small number of rounds per day [2]. Fig. 5 shows learning
curves over 1000 rounds for FedMCCS, VanillaFL, and FedCS.
Each curve is improved by taking the maximum test accuracy
reached among the prior rounds. The dotted lines in the figure

TABLE I
NUMBER OF COMMUNICATION ROUNDS NEEDED IN THE THREE

DIFFERENT APPROACHES TO REACH THE 80% AND 81% ACCURACY

(b)

(a)

Fig. 6. Variation of the number of selected clients for round 300 till 400.
(a) # of clients slelected out of �K × C�. (b) # of performant clients.

shows the accuracy at 80% and 81%, representing our targets,
which were attained in centralized settings. As for the shaded
areas, they represent the standard deviation of five executions
for the three approaches. We calculate the number of rounds
when the dotted lines cross the curves, and Table I quantifies
the results. With the same data distribution over the clients and
the same used model architecture, our FedMCCS outperforms
the other two approaches in terms of communication rounds.
To reach 80% accuracy, FedMCCS needs 108 rounds, while
this number increases by 8.0× for the VanillaFL, and by 8.4×
for the FedCS. As for the second target of 81% accuracy,
FedMCCS was able to reach it using 319 rounds, while the
other approaches were not able to achieve such model accuracy
throughout the 1000 rounds. We interpret such result by the
fact that we have more clients participating in the FL rounds:
The more clients we have, the more accuracy we get, and the
smaller number of rounds we perform. We detail this observa-
tion in the next section, while highlighting the selected number
of clients throughout the FL process.

B. Number of Clients Selected Throughout FL Process

Moving to question 2: “How many selected clients are able
to finish training, without dropping out?”, Fig. 6 depicts the
number of clients throughout the communication rounds. For
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Fig. 7. Completed versus discarded rounds in 1000 FL rounds.

better visual readability, we display in the figure the results for
rounds 300 till 400 only. First, we show in Fig. 6(a) how many
clients each client selection algorithm in the three approaches
chooses to request updates. For each round, VanillaFL selects
�K × C� clients at random. This results in a horizontal line
for the 100% selection of clients. As for FedCS, among the
random selection of �K × C� clients, the ones satisfying the
time constraint are selected; therefore, a selection of 100% of
the clients barely happens. On the other hand, our proposed
FedMCCS filters the clients based on their time zone, contacts
them for their resources, then predicts the ones able to participate
in the FL rounds. The target number of clients to be selected
might not be able to be reached sometimes, which is normal
as no enough clients would be available to volunteer in some
FL rounds.

In all the studied approaches, some of the selected clients will
not be able to answer back with the model updates. This depends
on the amount of data each device has, and the devices computa-
tion and communication resources. FedCS and VanillaFL, which
consider the time metric or no constraints at all respectively,
yield to many devices dropouts and few number of updates
sent by the clients as shown in Fig. 6(b). However, FedMCCS
selects the highest number of performant clients, by considering
the criteria (CPU, Memory, and Energy) affecting the dropouts
within the time threshold. The gray area in the figure shows
the range (70%-100%) of responsive clients, which the server
can tolerate to still perform the updates aggregation.

C. Number of Discarded Rounds in FL

As previously mentioned, when less than 70% of the
selected clients do not send their model parameters to the
server, the ongoing round is discarded. To answer ques-
tion 3: “How many FL rounds are discarded in the process?”,
Fig. 7 shows, in the three approaches, the number of com-
pleted/discarded rounds out of the 1000. Our FedMCCS results
in only few discarded rounds, compared to the two others,
which have more than half the rounds without model aggre-
gation. This is justified from the results of Fig. 6, that show
how the majority of the clients were misselected in FedMC
and VanillaFL.

D. Network Traffic Variation During FL Process

To evaluate question 4: “How the network traffic is vary-
ing during the process?”, we analyzed the load in the network

(a)

(b)

Fig. 8. Variation of network traffic in the FL process. (a) Full network traffic.
(b) Network traffic for parameters updates

by studying the network traffic when sending and receiving
some amount of data from/to the server/clients. In Fig. 8(a),
VanillaFL shows the least amount of data moving across the
network as no resource related data is shared between the com-
ponents prior to the updates requests. FedCS shows higher
traffic due to the exchanged messages for the time-based
resource request, in addition to the updates messages. On the
other hand, our proposed FedMCCS approach has peak values
every 100 rounds, referring to the historical data sent by the
filtered clients (after the stratified method). Only when signifi-
cant change in the resources, which may affect the FL rounds,
take place, the server gets notified from the clients. Therefore,
we did the analysis assuming that such modifications happen
every 100 rounds. The historical data set is usually of small
size, which is around 0.48-kB per client. Although the cost is
negligible, sending the historical data every 100 rounds helps
minimizing the communication cost in our proposed approach.
Then, the shared historical data is used, in the remaining
rounds, to directly select the expected clients that can well
perform in the training. This justifies the less network traffic
generated in FedMCCS compared to FedCS, apart from the
peak values.

In Fig. 8(b), we shows the amount of data transmit-
ted only when sending requests and receiving responses in
the Distribution and Update and Upload steps in
Protocols 1–3. Our FedMCCS maximizes the number of
clients by reaching �K×C�. For this reason, we have the high-
est network traffic compared to the other approaches. However,
the difference is negligible, since the average network traffic
for FedMCCS is around 7.6-kB per round, compared to 5.7 kB
for VanillaFL, and 4.9 kB for FedCS.

Among the full network traffic represented in Fig. 8, some
are wasted due to: 1) the requests sent to misselected clients,
and 2) the requests/responses successfully sent from/to the
clients in a discarded round. As shown in Fig. 9, our FedMCCS
reports the least wasted traffic, since the resources related
data is used to efficiently select the correct clients resulting
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Fig. 9. Amount of wasted network traffic in the FL process.

Fig. 10. Total amount of used and wasted network traffic in the 1000 FL
rounds.

in only 45 discarded rounds out of 1000 (results of Fig. 7).
This is not the case for FedCS and VanillaFL approaches,
where they show many discarded rounds. Moreover, FedCS
has more wasted traffic because of the first random selection
of the �K × C� clients for resource requests.

For better vision of how much traffic is wasted in each
approach, we illustrated in Fig. 10 the total used and wasted
traffic in the 1000 rounds. Although FedMCCS has more
traffic than Vanilla FL, but the wasted is negligible with con-
siderable decrease in the communication rounds to reach the
target accuracy (as shown in the results of Fig. 5).

VIII. CONCLUSION

We proposed in this article FedMCCS; an enhanced FL
with multicriteria client selection. Particularly, we proposed a
bilevel optimization scheme, which can efficiently select and
maximize the number of clients to participate in each of the FL
rounds, while considering their heterogeneity and their limited
communication and computation resources. The approach also
leverages stratified-based sampling to filter the available set of

clients while implementing an efficient client selection algo-
rithm based on multicriteria, including CPU, memory, energy,
and time.

Real life experiments explore that FedMCCS is able to train
and produce high-performant ML models with few rounds
of communication, compared to the state-of-the-art protocols
and approaches. This was achieved by selecting the maximum
number of clients in each FL round, while benefiting, at most,
from their computation resources, energy, and the network
traffic shared between the server and the clients.

As future direction, we tend to offer a solution that studies
how efficient is the update of each client will be to the global
model in order to participate in the FL process. This can sig-
nificantly save resources on the other clients that will not have
to contribute to the global model training.
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