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a b s t r a c t 

This paper addresses the challenge of providing trustworthy recommendations on newly 

deployed cloud services/resources for which little or no evidence about their trustworthi- 

ness is available. We also provide a two-level dishonesty discouragement mechanism to 

fight against unfair recommendations at both the collection and aggregation levels. Our 

solution consists of a (1) mechanism to allow users to self-assess the accuracy of their 

recommendations and autonomously decide on whether to participate in the recommen- 

dation process or not, (2) machine learning technique that generates reliable endorsements 

on newcomer items through extracting hidden similarities among the specifications of new 

and existing ones, (3) dishonesty-aware aggregation technique for endorsements coming 

from multiple advisors, (4) credibility update mechanism that captures the dynamism in 

the endorsers’ credibility, and (5) incentive mechanism to motivate advisors to participate 

in the endorsement process. Experiments conducted on the CloudHarmony and Epinions 

datasets show that our solution improves the accuracy of classifying newly deployed cloud 

services and yields better performance in protecting the recommendation process against 

Sybil attacks, in comparison with four existing recommendation approaches. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

With the widespread expansion of online shopping and the booming number of advertisements and promotional mes-

sages that target every single person, more and more people are relying on other buyers’ opinions and reviews prior to

filling their shopping cart. For example, a recent study conducted by Researchscape International 1 in 2018 revealed that 45%

of consumers are more likely to shop on a Web site that offers personalized recommendations, and that 56% of online shop-

pers are more likely to return to a site that offers product recommendations. Cloud computing, a revolutionary computing

paradigm for offering software and hardware over Internet in the form of virtualized resources, is not immune to this trend.
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Specifically, with the huge number of cloud services (e.g., network storage, application hosting) that are available online,

users are increasingly relying on online reviews to filter out their choices of cloud resources. 

This has pushed the research community to design and implement plenty of recommender systems to help users dif-

ferentiate among online items and services on the basis of their previous performance/quality. Traditionally, recommender

systems analyze users’ profiles and service/items’ specifications and try to find the best matches. It can be argued, however,

that the role of recommender systems should go further to investigate the trustworthiness of items prior to recommenda-

tion [1,11,30] . Failing to do so might lead to recommending items/services of poor performance or even ones that result in

harm, thus decreasing the credibility and reputation of the underlying recommender system for users. Trust is being in-

creasingly adopted to assist recommender systems in providing more reliable decisions for users [33,38,39] , especially in

contexts where peer advice is employed [9,11] , both to prevent reliance on properly measuring user similarity [27] and to

address cold start challenges by inferring user preferences from trusted neighbours [8] . Nonetheless, current trust solutions

leave some problems unsolved, particularly when it comes to recommending newly deployed items for which no evidence

about their former behaviour is available. To better highlight this problem and the importance of solving it, we give in the

following a real-life motivating example. 

Motivating Example . Consider a cloud-based central data analytics service which analyzes patients’ data gathered from

a number of local cloud-based services around the World. In such a scenario, the overall quality of the analytics process

highly depends on the quality of the data provided by each single local server. Therefore, selecting trustworthy servers to

get data from is of prime importance to maximize the credibility of the whole analytics process. Imagine now a scenario in

which the central server has the choice to get data from service x which is newly deployed and has no previous interactions.

In case the server decides to get data from x , it risks dealing with a completely bad service, thus endangering the quality

of the data analytics process. In case the server decides not to get the data from x , it might be depriving itself from high-

quality data that consist of worthy features. Moreover, if all the parties refrain from collaborating with newly deployed cloud

services due to their uncertainty, such newcomer servers will never have the chance to collaborate and build a trust record.

Therefore, it is of prime importance for both existing and newcomer cloud services to come up with a trust bootstrapping

approach which helps derive accurate initial trust scores for newly deployed services in order to alleviate uncertainty and

help both parties make more thoughtful decisions. 

1.1. Problem statement 

Numerous approaches have been proposed to derive recommendations on cloud services. The main idea of the existing

approaches [2] for deriving the recommendation on a certain service is to either map the performance registry of the un-

derlying service to the users’ profiles and preferences or to capitalize on the collaborative filtering approach [12] to derive

the similarity in terms of users’ preferences and capitalize on this similarity to predict the corresponding preferences. How-

ever, the performance of these approaches degrades when newly deployed cloud services are encountered. In other words,

when no or little data on the cloud services can be found, it becomes quite hard for these approaches to derive meaningful

insights on the potential performance of such services. Moreover, in extreme scenarios wherein newly registered users seek

recommendations on newly deployed services, these approaches fail to learn the preferences of the newly registered users,

which makes them unable to capture potential similarities with existing users. To address this challenge, we propose in this

paper a trust bootstrapping approach for newly deployed cloud services. The proposed approach operates effectively even in

such challenging scenarios wherein newly registered users seek recommendations on newly deployed cloud services. 

Moving to the dishonesty discouragement part, which is a building block in our approach to guarantee the authentic-

ity of the derived recommendations, the current literature can be classified into two categories, i.e., collection-level and

processing-level approaches. In the collection-level approaches, the recommender system derives the optimal network of 

advisors that maximizes trust and propagates the recommendation requests through it. The problem of these approaches is

that they overlook the self-willingness and self-confidence of the advisors in submitting recommendations. In other words,

although some advisors might be highly trusted in general, this does not mean that they will be providing accurate rec-

ommendations for all types of requests. The accuracy here might vary according to the data available to these advisors,

the characteristics of the services being recommended, and the technique used to compute recommendations. To tackle

this challenge, we leave in this work the choice for the consulted advisors to self-asses their own ability in participating

in the recommendation process or not. In addition, we require the advisors to use a common recommendation computa-

tion technique (i.e., decision tree) to increase the homogeneity of the received recommendations. The second limitation of

collection-level approaches is that when the number of advisors is large, it becomes quite hard to design an efficient optimal

network selection algorithm in a reasonable time. 

Processing-level approaches [30] employ some aggregation techniques to derive aggregate recommendation decisions 

that are resilient to dishonesty. The problem with these approaches is that they ignore the collection level and leave all the

dishonesty discouragement responsibilities for the aggregation model, which might be vulnerable to manipulation especially

in cases in which dishonest advisors form the majority, a case that is likely to arise due to a lack of any countermeasure at

the collection level. To address this challenge, our solution operates at the collection level as well to allow honest advisors

that have low accuracy for a certain recommendation request to self-withdraw in order to facilitate the detection of dis-

honest recommendations. Moreover, we propose at the processing level an aggregation technique coupled with a credibility

update mechanism to better protect against manipulations. 
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1.2. Contributions 

The proposed solution is composed of four principal phases: endorsements collection, dishonesty-aware aggregation,

credibility update, and participation motivation. In the endorsements collection phase, advisors (i.e., cloud users) are asked

by the underlying recommender system to run a decision tree machine learning technique on their datasets to derive appro-

priate recommendations. Specifying the machine learning technique to be used is helpful in our solution to guarantee the

homogeneity in terms of opinions origins. Leaving this decision for the advisors might lead to inconsistent decisions that

are biased towards some machine learning algorithms, dataset size, number of dimensions in the dataset, etc. Our choice of

decision tree stems from its lightweight nature which makes it suitable for situations wherein resource-constrained devices

exist 2 . Interested advisors (e.g., those that have enough resources) train the decision tree algorithm on their datasets which

record their previous interactions with services of different specifications and behavior and decide, based on the obtained

accuracy level, on whether to submit their opinions or not 3 . 

In the dishonesty-aware aggregation phase, different endorsements from different advisors are aggregated by the rec-

ommender system using the Dempster-Shafer Theory (DST) of evidence [36] to arrive at final aggregate initial trust scores.

The endorsements aggregation technique takes into consideration the dishonest endorsements that might be submitted to

promote/demote some newcomer services. In the credibility update phase, we propose a mechanism to update the credibil-

ity scores of the advisors that participate in the endorsements collection phase in order to ensure the authenticity of the

bootstrapping process. Finally, in the incentive mechanism, we link the number of endorsement requests that each user is

allowed to make regarding newcomer services from any other user to the level of her contribution in responding to that

user’s requests, proportionally to her credibility score in terms of providing honest endorsements. In summary, the main

contributions of this paper are: 

• Proposing a trust bootstrapping mechanism to provide recommendations on newly deployed cloud services for which no

or little data on their former behavior/performance is available. 
• Proposing a dishonesty discouragement mechanism that operates at both the recommendations collection and process-

ing levels to provide effective protection against dishonest endorsements that seek to manipulate the recommendation

process. 
• Designing our solution in such a way to handle situations wherein users need urgent endorsements as well as non-urgent

endorsements. 

1.3. Organization 

Section 2 reviews relevant related work and highlights the originality of our work compared to the state-of-the-art. In

Section 3 , we discuss the details of the proposed recommendation bootstrapping solution. In Section 4 , we present experi-

mental results and empirical analysis. Finally, we summarize the main findings of the paper in Section 5 . 

2. Related work 

We present in the following relevant related work and highlight the originality of our solution. 

2.1. Recommendation systems for cloud computing 

The existing recommendation approaches proposed for cloud computing environments can be classified into two main

categories, i.e., collaborative filtering and knowledge-based approaches. 

2.1.1. Collaborative filtering approaches 

Collaborative filtering approaches seek to find recommendations on newly deployed cloud services based on the similar-

ity between the features of these services and those of existing services. The collaborative filtering process consists of two

phases. In the first phase, the recommender system builds a model to derive the similarity between all pairs of services. In

the second phase, the recommender system capitalizes on the most similar services to a user’s already-rated items to create

a list of recommendations for that user. For example, in [26] , the authors adopt the collaborative filtering approach to derive

recommendations for cloud services. They propose a solution based on the lattice theory in which the description of the

cloud environment (e.g., users, ratings, services) is represented via the lattice representation and recommendations are then

generated through extracting relevant information from the lattice (e.g., users that are similar to an active user, top services,

etc.). In [29] , the authors aim to improve the accuracy of cloud services recommendation while considering multi-source

quality data coming from multiple cloud provides (e.g., Amazon and IBM). Two challenges are mainly addressed in such a
2 Examples of resource-constrained environments include cloud users using their battery-constrained smartphones to run the decision tree technique. 
3 The decision of refraining from submitting opinions stems mainly from a low accuracy level obtained by the machine learning classifier. Such a decision 

both helps advisors to preserve their credibility toward endorsement requestors and the underlying recommender system to maintain the accuracy of its 

aggregate decisions. 
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scenario, which are: (1) protecting the privacy of each provider’s users (from the rest of the collaborators) and (2) ensuring

the scalability and efficiency of the recommendations with the frequent update of quality data for each provider. To answer

these challenges, the authors propose a service recommendation approach based on distributed locality-sensitive hashing to

ensure privacy-preserving and scalable recommendations in distributed cloud environments. The authors of [5] address the

challenge of the frequent change in the QoS of cloud services over time and propose a time-aware service recommendation

approach. The approach consists of a (1) similarity-enhanced collaborative filtering technique to capture the time feature of

user similarity and address the data sparsity problem in the existing PITs (Point In Time) and (2) autoregressive integrated

moving average model (ARIMA) to predict the QoS values in the future PIT under QoS instantaneity. 

The main limitation of collaborative filtering approaches is that their performance degrades in extreme scenarios wherein

newly registered users seek recommendations on newly deployed services. In such a case, these approaches fail to learn the

preferences of the newly registered users and are hence unable to capitalize on the similarities between the specifications

of existing and newly deployed services to generate appropriate recommendations. To address this problem, we propose in

this paper a bootstrapping approach that does not rely on users’ past preferences to derive recommendations on newcomer

cloud services. 

2.1.2. Knowledge-based approaches 

As opposed to collaborative filtering systems, a knowledge-based recommendation system does not rely on users or ser-

vices’ rating history to generate recommendations but instead it prompts the user to answer a series of questions based

on which the system then searches through its database to return the services that best match with the users’ answers.

For example, in [45] , the authors propose CloudRecommender, a declarative recommendation system for Infrastructure-as-

a-Service (IaaS) resources, which automates the process of mapping users’ requirements to IaaS configurations. The IaaS

resource configurations are represented using ontology and implemented through a structured data model that can be con-

trolled using regular expressions and the Structured Query Language (SQL). A keyword-aware service recommendation ap-

proach called KASR is proposed in [25] . The approach analyzes keywords to infer users’ preferences. Thereafter, an algorithm

is proposed to accordingly produce appropriate recommendations. The proposed approach is implemented on Hadoop using

the MapReduce programming model to boost its efficiency and scalability. The authors of [10] propose an approach that

aids users in selecting services from different cloud providers that meet their requirements. In the proposed approach, the

recommendation system relies on Quality of Service (QoS) metrics and Virtual Machine (VM) platform factors of different

providers to rank the different cloud services and recommend the appropriate ones to the users. The approach proposed in

[43] allows users to specify their perception of quality criteria and then advances a clustering technique from data mining 

to classify cloud services into several clusters on the basis of the input criteria and rank them accordingly. The authors of

[6] advance an agility-oriented and fuzziness-embedded cloud service ontology model. The model captures each service’s

specifications through analyzing the interactions among service of different categories and abstraction scales, thus enabling

prototype-based service recommendation system. In [44] , the authors propose a real-time QoS-aware multi-criteria decision-

making approach that supports the recommendation of next-generation applications such as online interactive gaming and

large-scale sensor analytics. The proposed approach is beneficial for helping select IaaS resources, while allowing users to

define various design-time and real-time QoS requirements. 

The main limitation of knowledge-based recommendation approaches is that they heavily rely on users’ answers to gen-

erate recommendations. However, users may sometimes enter some random answers by ignorance or by laziness, which

would sway the recommendation decisions generated by the recommender system. Even more importantly, some malicious

users might take advantage of knowledge-based systems to intentionally submit malicious answers to attack the underlying

recommender system (e.g., SQL injection). To avoid such situations, our approach does not impose any additional burden on

users nor does it rely on users’ honesty to derive trust scores for newcomer cloud services. 

2.2. Trust bootstrapping 

Trust bootstrapping in the domain of cloud computing refers to the problem of assigning initial trust scores to newly de-

ployed cloud services for which no record about their former behavior is available. The existing bootstrapping solutions in

the domain of cloud computing can be categorized into three main classes: (1) Default-value; (2) punishment-based; and (3)

adaptive. Default-based approaches assign a default trust score for each newcomer cloud service. The main limitation of this

approach is that it might arbitrarily favor either newcomer services (in case the assigned default value is high) or existing

services (in case the assigned default value is low). This would encourage malicious providers to constantly deploy services

with new identities with the aim of eliminating their past poor trust history. Such a misbehavior is called whitewashing

attack. To counter whitewashing, the punishment-based approach assigns low trust values for newcomer cloud services. The

main drawback of this approach is that it disfavors newly deployed services through depriving them from interacting with

other services and building their trust record. The adaptive bootstrapping strategy capitalizes on the concept of collaborative

filtering through measuring the similarity between the newly deployed services and some existing services to approximate

the initial trust scores for the newcomer ones. For example, the authors of [4] advanced a bootstrapping mechanism that is

inspired by human organizational behaviour. In this approach, agents learn stereotypes from interactions with familiar part-

ners and employ them to assign initial trust values for new and unknown partners. The trust prediction problem is modeled

as a regression problem whose inputs are sets of observable binary feature variables, where each feature denotes whether
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the trustee has a particular asset or pertains to a particular organisation. In [21] , the authors addressed the trust bootstrap-

ping problem in the Service-Oriented Computing domain and proposed two approaches to compute initial reputation values

for the newly deployed services. The first approach capitalizes on the cooperation among services in a community-based

context to derive initial reputation values. Specifically, consumers bootstrap newcomer services proportionally to the rate of

maliciousness of the community to which services belong. In the second approach, community providers are asked to assess

newcomer services for a certain period of time and assign them initial reputation values accordingly. In [37] , the authors

capitalize on the concepts of trust mirroring and trust teleportation to handle the bootstrapping problem. Using the first

concept, agents’ similarities, capabilities, and roles are used to predict their future trust. In particular, if agent x realizes,

based on previous interactions, that agent y has analogous interests and opinions as those of x , then x is likely to trust y ’s

behavior in the future. Using the teleportation concept, agent x will trust all the agents that have similar capabilities and

interests as another agent z that is already trusted by x . The authors of [28] proposed a bootstrapping solution that uses

agents’ observable features (a.k.a tags). Specifically, the distance between the values of the different tags are computed to

quantify how behaviourally similar the new agents are to the existing ones. Once enough interactions and experiences are

available, a trust assessment method is advanced to evaluate the trust scores of the agents during their lifetime based on

their actual behavior. In [8] , the authors assume that users have a network of trusted peers and combine the opinions of

these advisors, averaging their ratings on commonly rated items. Trust and social similarity are merged to represent the

active user’s preferences and generate appropriate recommendations, for the case when little is known about the user. In

[23] , the authors employ collaborative filtering to ease the recommendation process using a two-stage methodology. In the

first stage, users are represented in the form of a social network graph and the task is to collect trust statements regarding

newcomer users. In the second stage, all the trust statements are analyzed and aggregated using the averaging technique to

predict the trust scores of the newcomer users. In [20] , the authors propose a three-phase approach to address the prob-

lem of cold-start users. In the first phase, the C4.5 and Naive Bayes techniques are employed to assign new users to specific

groups. In the second phase, an algorithm is proposed to explore the neighbors of the new user and an equation is presented

to compute the similarity between new users and their neighbors in terms of characteristics. In the final phase, a prediction

method is used to estimate the final rating of the new user for every existing item, where the rating is a weighted sum of

ratings submitted by the user’s neighbors on the corresponding item. 

The main drawback of the adaptive approach is that is still vulnerable to whitewashing where malicious providers can

inject some well-behaving services to gain high trust values. Thereafter, these providers will deploy malicious services with

similar features to the already deployed ones. These malicious services will benefit from the high trust rate of their prede-

cessors to gain high trust scores and initiate their malicious behavior. This type of attacks can be referred to as a camouflage

attack. To counter such an attack, we propose in this paper a two-level dishonesty discouragement solution that operates

at both the trust recommendation collection and aggregation levels. At the collection level, we allow advisors to self-assess

their aptitude for participating in the recommendation process. At the aggregation level, we propose a credibility-based trust

aggregation techniques that capitalizes on DST to fight against dishonest recommendations. We also evaluate in Section 4 the

effectiveness of our solution with regard to camouflage attacks. 

2.3. Discussion and unique features of our solution 

The main idea of the aforementioned approaches for deriving recommendations is to either map the performance history

of the cloud services to the profiles of the users or to employ the collaborative filtering approach to measure the similarity in

terms of users’ preferences. Nonetheless, the performance of these approaches degrades when newly deployed cloud services

are encountered. In other words, when no or little data on the cloud services are available, these approaches struggle to

derive meaningful insights on the potential performance of these services. Moreover, in extreme scenarios wherein newly

registered users seek recommendations on newly deployed services, these approaches fail to learn the preferences of the

newly registered users and are hence unable to capture potential similarities with existing users. To address this problem,

we propose in this paper a trust bootstrapping approach for newly deployed cloud services that works effectively even in

such challenging scenarios when newly registered users seeks recommendations on newly deployed cloud services. 

Moving to the dishonesty discouragement part, the primary contrast with the aforementioned models can be outlined

in three main points. First, the discussed approaches deal with dishonest recommendations at either the collection or pro-

cessing level. Our solution operates on both levels to increase the protection against dishonest recommendations. Second, in

the approaches that operate at the collection level, the choice of evaluating the adequacy of the advisors (e.g., cloud users)

in participating in the recommendation process is left only to the recommender system through computing the optimal

network of advisors that maximize trust, without accounting for the self-willingness and self-confidence of the advisors

themselves. In other words, although some advisors might be highly trusted in general, this does not mean that they will

be providing accurate recommendations for all types of requests. The accuracy here might vary according to the data avail-

able to these advisors, the characteristics of the services being recommended, and the technique used to compute recom-

mendations. To tackle this challenge, we leave in this work the choice for the advisors to self-assess their own ability in

participating in the recommendation process or not. In addition, we ask the advisors to use a common recommendation

computation technique (i.e., decision tree) to increase the homogeneity of the received recommendations. Third, different

from the literature which employs aggregation techniques that might be vulnerable to manipulation [11] , we take advan-
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tage of DST to perform the aggregation in a manner that is sensitive to possible dishonesty even in extreme cases wherein

dishonest agents might be the majority. This formulation is described in Section 3.3 . 

3. Trust bootstrapping for newcomer cloud services 

In this section, we give the details of our bootstrapping solution and explain its main phases. 

3.1. Solution overview 

The proposed solution can be summarized as follows. Users maintain a dataset which corroborates its previous inter-

actions with cloud services of different specifications and behavior. These users can be companies, hospitals, smartphones,

Internet of Things (IoT) devices or any other type of devices that are charged, plugged-in, and on an unmetered wi-fi connec-

tion. For example, in a cloud-based healthcare management application, data owners are mainly hospitals, doctors’ offices,

home-based devices and patients’ smartphones. This scenario complies well with the future trend in machine learning which

is increasingly heading toward federated distributed learning [24] in which users volunteer to distributively participate in

the training process on their own local data. This dataset is assumed to be labelled in the sense that the user would classify

each interaction as being either trustworthy or untrustworthy based on the degree of his/her satisfaction on the behavior

of the items dealt with during the interaction. Upon the receipt of a bootstrapping request from the recommender system

to submit an endorsement on a newly deployed cloud service i in favor of user u 1 , user u 2 has the choice to decide on

whether to participate in the bootstrapping process or not. If user u 2 accepts to participate, she will train a decision tree

machine learning classifier on her dataset to predict the trustworthiness of service i based on the potential similarities be-

tween the specifications of i and the specifications of the services that user u 2 has previously dealt with. (i.e., content-based

recommendation). The output of the decision tree is a label indicating whether the service being bootstrapped is trustwor-

thy or untrustworthy. Based on the results of the decision tree classifier, user u 2 endorses service i as being (potentially)

either trustworthy or untrustworthy. To avoid biased endorsements, the recommender system collects endorsements from 

multiple users and aggregates them using DST to come up with a final aggregate decision that is resilient to dishonesty.

Since the performance of DST is greatly dependent on the credibility of the parties giving the judgements, the final step

involves updating the credibility scores of the participating users on the basis of the convergence/divergence of their opin-

ions w.r.t the final judgement given by DST. To incentivize users to submit endorsements, we restrict each user to a limited

number of inquiries it can make initially, where this number is increased whenever the user participates in an endorsement

process, provided that it also maintains a good credibility score. Thus, over time, the users that refrain from reporting will

get their inquiries drained and will be unable to make further requests. The proposed bootstrapping solution is depicted in

Algorithm 1 . 

3.2. Endorsements collection 

Whenever a user encounters a newly deployed cloud service for which no reviews about its behavior and performance

are available, she sends a bootstrapping request to the underlying recommender system. This recommender system runs

Algorithm 1 to obtain appropriate trust values on that service. The computational complexity of the proposed solution (i.e.,

Algorithm 1) can be divided into two parts, i.e., complexity on the recommender system and complexity on the users partic-

ipating in the bootstrapping process. Starting with the complexity on the recommender system, steps 5–8 can be executed

by the recommender system in constant time, i.e., O(1) . The main complexity on the recommender system’s side lies in

steps 16 and 17, which can be executed with a complexity of O(2 m ) [19] , with m being the number of basic probabil-

ity assignments being combined. Steps 18–21 can be executed in constant time, i.e., O(1) .Steps 23–24 can be executed

in linear time, i.e., O(| U| ) with |U| being the number of users participating in the bootstrapping process. Thus, the over-

all complexity on the recommender system’s side is O(2 m ) + O(1) + O(| U| ) = O(2 m + | U| ) . Moving to the users’ side, step

12 entails a computational complexity of O(n 2 p) for training the decision tree model and step 13 entails a complexity of

O(p) for predicting the class labels, where n is the number of training observations and p is the number of features in

the user’s dataset. Step 14 can be executed in a constant time, i.e., O(1) . Thus, the overall complexity on each users is

O(n 2 p) + O(p) + O(1) = O(n 2 p + p) . 

We distinguish between two types of bootstrapping requests, i.e., urgent requests and non-urgent requests. This classifi-

cation is important to cover both users who need immediate recommendations to complete their transactions while online

and those who prefer to make their choices at later stages. Specifically, urgent requests are those requests for which the

user wants a prompt answer to complete her transaction immediately. On the other hand, for non-urgent requests, the

user can wait for a certain time before receiving the bootstrapping endorsements. In the case of urgent requests wherein a

prompt answer is needed, only online or active users at the moment when the request is sent are consulted by the recom-

mender system. In the case of non-urgent requests, the online and offline users that are stored in the recommender system’s

database are consulted. 

When a user receives a bootstrapping request, she has the choice either to participate in the process or not. This volun-

tary aspect of participation is a building block in our bootstrapping mechanism to ensure the fairness of the bootstrapping

process for both bootstrapping users and bootstrapped service. Specifically, some users might not be willing to spend some
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Algorithm 1: Trust bootstrapping algorithm. 

1: Input : Newly cloud service i 

2: Input : Request type T ∈ { urgent , non-urgent } 
3: Input : Set U of users participating in the bootstrapping process 

4: Output : Endorsement R (r, i ) of recommender system r on item i 

4: procedure TrustBootstrapping 

5: if T = urgent then 

6: Send bootstrapping request to currently online users 

7: else 

8: Broadcast bootstrapping request to online and offline users 

9: end if 

10: // Bootstrapping process 
11: for each user u ∈ U do 

12: User u builds a decision tree classifier using Eqs. (1), (2), and (3) 

13: User u derives the endorsement of cloud service i using decision tree 

14: User u submits the endorsement if the obtained accuracy is sufficient 

15: end for 

16: Use Eq. (4) to compute belief in i ’s trustworthiness θ i 
r (T ) 

17: Use Eq. (5) to compute belief in i ’s untrustworthiness θ i 
r (N) 

18: if θ i 
r (T ) > θ i 

r (N) then 

19: R (r, i ) =trustworthy 

20: else 

21: R (r, i ) =untrustworthy 

22: end if 

23: Update the credibility score of each user u ∈ U using Eq. (8) 

24: Update the number of inquiries that each user u ∈ U is allowed to make using Eq. (9) (8) 

25: end procedure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

time helping other users make choices. Moreover, some users might have insufficient accuracy (determined by the ma-

chine learning technique) due to lack of any similarity between the specifications of the item dealt with and those of the

item being bootstrapped 

4 Therefore, refraining from participating would be the best choice for these users instead of giv-

ing inaccurate endorsements (thanks to the credibility update mechanism proposed in Section 3.4 ). In case users agree to

participate in the bootstrapping process, they first use the decision tree technique to predict the behavior of the newly

deployed items and derive the appropriate endorsements. Note that decision tree has been chosen for the bootstrapping

problem due to its lightweight nature which requires no heavy computations nor long training time. This is important to

(1) incentivize users to participate in the endorsements collection process since they are not required to use large amounts

of resources (e.g., smartphone battery) to derive endorsements, (2) minimize the time required to collect endorsements to

fit urgent bootstrapping requests which require prompt answers, and (3) support different platforms that users can use to

derive endorsements (e.g., mobile phones). 

Decision tree reasoning is a machine learning technique which learns decision rules from historical (training) data to

predict the classification or value of target variables [16] . The basic idea of decision tree is to recursively and constantly

split the training data into subsets based on an attribute importance test until all samples for a given node belong to

the same class or until there are no remaining attributes for further partitioning. The topmost decision node (a.k.a root

node) represents the attribute which gives the best prediction results, whereas the bottommost nodes (a.k.a leaf nodes)

correspond to the decisions generated by the decision tree algorithm. The most critical part of building decision trees is

non-leaf attribute nodes selection. The challenge here is to select the most informative attributes, i.e., the attributes that

give the best clue about the output attribute which helps minimize the number of intermediate nodes and hence minimize

the decision tree size. To measure the degree of informativeness of the attributes, the information gain statistical measure

is commonly used [34] . It measures how much knowing the value of a certain input attribute can give us hints about the

potential value of the output attribute. Thus, the attribute which gives the highest information gain is selected as being the

attribute that is the most appropriate to start building the decision tree with. In order to compute the information gain

metric, we need first to calculate the entropy which measures the impurity or un-orderedness in the class distribution in a

certain dataset D (i.e., how good an attribute is in differentiating among samples belonging to different classes). The entropy
4 Allowing advisors to opt out is especially valuable towards specifying how to perform Sen’s proposed “engage” step in trust processing [35] - limiting 

which peers to consult, to improve the performance of the trust modeling. 
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Table 1 

Snapshot of the CloudHarmony dataset. 

Provider Deployment _ Area Actual _ A v ail abil ity Trusted? 

Amazon EC2 ap-northeast-1 100 Yes 

Amazon EC2 ap-northeast-1 100 Yes 

Agile Cloud dublin 99.9848 Yes 

Agile Cloud dallas 100 Yes 

LunaCloudCompute dublin 99.7222 No 

dediserve eu-west 99.5554 No 

dediserve eu-west 100 Yes 

dediserve eu-west 99.9949 Yes 

dediserve dallas 84.9422 No 

dediserve dublin 85.0587 No 

dediserve dallas - ? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is computed as per Eq. (1) . 

E(D ) = 

n ∑ 

i =1 

−p i log 2 p i (1) 

where D is a (sub)set of examples, n > 1 is the number of class labels and p i is the proportion of samples in D that belong

to the class label i . Note that a value of 0 for the entropy means that all the samples of D belong to the same class label

and that the data is perfectly classified (into one single class), whereas a value of 1 means that the data is classified evenly

among the different class labels. This entropy measure quantifies only the quality of a single set of examples but cannot

measure the quality of the complete split. Therefore, we need to compute the weighted average entropy over all the sets

forming a certain split as per Eq. (2) . 

I(D, at t r) = 

∑ 

k ∈ K at t r 

| D k | 
| D | · E(D k ) , (2) 

where K attr is the set of distinguished values of attribute attr and E ( D k ) is computed following Eq. (1) restricted to the value

k of the attribute attr . Having computed both the entropy and weighted entropy, the next step is to derive the information

gain of each attribute attr as per Eq. (3) . 

Gain (at t r) = E(D ) − I(D, at t r) , (3) 

To better clarify how decision tree can be practically used to obtain endorsements on newly deployed items, we give in

the following an illustrative example on a subset of the CloudHarmony dataset, which is used in Section 4 for our exper-

imental analysis. The dataset records information about cloud services possessed by well-known providers and running in

disparate parts of the World. In particular, the availability and throughput (we show only availability in this example for

the sake of simplicity) of the services have been measured for a period of thirty days and compared with the availability

and throughput promised by the providers in the Service-Level Agreement (SLA) in order to get an idea on how trusted are

these providers in committing to their promises. More details about the dataset are provided in Section 4 . A snapshot of the

dataset is also given in Table 1 . 

Having this (sub)dataset at hand, suppose now that we are asked to endorse a newcomer service whose provider is

dediserve and which is deployed in the area of dallas (last line in Table 1 ). The first step is to compute the entropy of the

dataset D using Eq. (1) . In the class label Trusted? (rightmost column) of Table 1 , we have 6 services out of 10 classified

as Yes and 4 services classified as No . Thus the entropy of the dataset would be: E(D ) = − 6 
10 log 2 ( 

6 
10 ) − 4 

10 log 2 ( 
4 

10 ) = 0 . 971 .

Then, the next step is to compute the entropy of each attribute (i.e., provider and deployment _ country ) as per Eq. (1) as well.

Note that the actual _ a v ail abil ity attribute is omitted from the following calculations since the actual _ a v ail abil ity attribute

is not supposed to be known for any newcomer service being bootstrapped. However, we show this attribute in Table 1 to

show how the class label attribute (i.e., Trusted? ) has been decided. The methodology used to compute the entropy value

of the Provider attribute is illustrated in what follows: 

• Provider = Amazon EC2: We have 2 examples classified as Yes and 0 example classified No : 

E(D AmazonEC2 ) = −1 · log 2 (1) − 0 · log 2 (0) = 0 
• Provider = Agile Cloud: We have 2 examples classified as Yes and 0 example classified as No : 

E(D Agil e Cl oud ) = −1 · log 2 (1) − 0 · log 2 (0) = 0 
• Provider = LunaCloudCompute: We have 0 examples classified as Yes and 1 example classified as No : 

E(D LunaC loudC omput e ) = 0 
• Provider = dediserve: We have 2 examples classified as Yes and 3 examples classified as No : 

3 3 2 2 
E(D d ed iserv e ) = − 5 · log 2 ( 5 ) − 5 · log 2 ( 5 ) = 0 . 971 
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Table 2 

Snapshot of the filtered CloudHarmony dataset according to the provider 

attribute (i.e., dediserve). 

Provider Deployment _ Country Actual _ A v ail abil ity Trusted? 

dediserve eu-west 99.5554 No 

dediserve eu-west 100 Yes 

dediserve eu-west 99.9949 Yes 

dediserve dallas 84.9422 No 

dediserve dublin 85.0587 No 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, we compute the weighted average entropy for the Provider attribute over all the sets as per Eq. (2) : I(D, prov ider) =
2 

10 · 0 + 

2 
10 · 0 + 

1 
10 · 0 + 

5 
10 · 0 . 971 = 0 . 4855 . Having derived the entropy and the weighted average entropy, the information

gain of the Provider attribute ( Eq. (3) ) is: Gain (P rov ider) = 0 . 971 − 0 . 4855 = 0 . 4855 . 

Next, we move to computing the information gain of the Area attribute using the same methodology used for the

Provider : 

• Area = ap-northeast-1: We have 2 examples classified as Yes and 0 example classified as No : 

E(D ap−northeast−1) = 0 
• Area = dublin: We have 1 example classified as Yes and 2 examples classified as No : 

E(D dublin ) = − 2 
3 · log 2 ( 

2 
3 ) − 1 

3 · log 2 ( 
1 
3 ) = 0 . 9176 6 6 

• Area = euro-west: We have 2 examples classified as Yes and 1 example classified as No : 

E(D euro−west ) = − 1 
3 · log 2 ( 

1 
3 ) − 2 

3 · log 2 ( 
2 
3 ) = 0 . 9176 6 6 

• Area = dallas: We have 2 examples classified as Yes and 3 examples classified as No : 

E(D dal l as ) = − 1 
2 · log 2 ( 

1 
2 ) − 1 

2 · log 2 ( 
1 
2 ) = 0 

Now, we compute the weighted average entropy for the Area attribute over all the sets as follows:

I(D, Deployment _ Area ) = 

2 
10 · 0 + 

3 
10 · 0 . 917666 + 

3 
10 · 0 . 917666 + 

2 
10 · 0 = 0 . 5505996 . Having derived the entropy and the

weighted average entropy, the information gain of the Deployment _ Area attribute is: Gain (Deployment _ Area ) = 0 . 971 −
0 . 5505996 = 0 . 4204004 . 

Since the information gain of the Provider attribute is higher than that of the Deployment_Area attribute, the former at-

tribute is selected to be the root of the decision tree. Since there are four possible values for the Provider attribute ( Table 1 ),

the root of the decision tree would have exactly four branches, namely those of Amazon EC2, Agile Cloud, LunaCloudCompue ,

and dediverse . Now, the mission is to find the successor of the root attribute for each of those four branches. Starting with

the Amazon EC2 branch, since all of the services whose provider is Amazon EC2 are classified as trusted in the Trusted?

attribute ( Table 1 ), this branch is terminated with a leaf node of value Yes . Similarly, the Agile Cloud branch is terminated

with a leaf node of value Yes since all of the two services whose provider is Agile Cloud are classified as Yes . In contrary,

since the only service whose provider is LunaCloudCompute is rated as untrustworthy, the LunaCloudCompute branch is ter-

minated with a value of No . Finally, for the dediverse , we have conflicting classifications (i.e., two Yes and three No ) as shown

in Table 2 . Therefore, the Deployment_Area is used as another split attribute in the decision tree. For the dallas and dublin

values of the Deployment_Area attribute, the services whose provider is dediverse are always classified as untrustworthy.

On the other hand, when the Deployment_Area is eu-west , we have two cases where the services have been classified as

trusted (i.e., Yes ) and one case where a service has been classified as untrustworthy (i.e., No ). These cases are schematically

displayed using the filtered dataset given in Table 2 . To settle this dispute, the majority voting scheme [14] is employed,

where the branch Provider 
dediserve −−−−−−→ Deployment_Area 

eu-west −−−−−→ ? is terminated with a No leaf node. The complete decision

tree for this example is given in Fig. 1 . 

3.3. Dishonesty-aware aggregation 

The purpose of this phase is to aggregate the different endorsements collected as per the previous section in a non-

collusive manner, i.e., in such a way that is resilient to the bootstrappers that submit misleading endorsements to pro-

mote/demote some newly deployed items. To do so, the Dempster-Shafer theory of evidence, which is known for its power

in combining observations coming from multiple sources having different levels of credibilities, is employed. It is true that

DST has been used in many proposals for trust establishment purposes [41,42] ; however, the main difference between our

endorsements aggregation mechanism and the existing DST-based trust establishment techniques is that our solution re-

quires no predefined thresholds to make a final decision on whether to trust the newly deployed item or not. Specifically,

contrary to the existing approaches whose performance is greatly dependent on a certain threshold, we propose to compute

both the belief in an item’s trustworthiness and untrustworthiness and compare them to arrive at a final decision. More-

over, the existing approaches adopt a static approach for assigning weights for the witnesses. Contrary to the literature, each

witness (endorsement) is weighted according to the credibility score of its issuer in our approach as was discussed in [40] ,

where credibility scores are continuously updated to reflect endorsers’ honesty dynamism. 
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Fig. 1. Classification results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formally, let � = { T , N, U} be a set composed of three hypotheses representing the possible endorsements regarding a

newly deployed item, where T means trustworthy, N means untrustworthy, and U means uncertainty between trust and

distrust. The basic probability assignment (bpa) m 

i 
b 
(H) of a particular hypothesis H given by bootstrapper b regarding an

service i is proportional to the credibility score of b . Specifically, if bootstrapper b having a credibility score equal to λ has

bootstrapped item i as being trustworthy, then the bpa’s of the different hypotheses are computed as follows: m 

i 
b 
(T ) = λ,

m 

i 
b 
(N) = 0 , and m 

i 
b 
(U) = 1 − λ. Otherwise, if b bootstraps i as being untrustworthy, then the bpa’s of the hypotheses are

computed as follows: m 

i 
b 
(T ) = 0 , m 

i 
b 
(N) = λ, and m 

i 
b 
(U) = 1 − λ. 

Having defined the bpa’s, the final aggregate belief function regarding a certain hypothesis H is computed through sum-

ming up all the bpa’s coming from different bootstrappers upholding this hypothesis H . The belief function that recom-

mender system r computes regarding item i ’s trustworthiness after having consulted two bootstrappers b and b ′ is given in

Eq. (4) . 

θ i 
r (T ) = m 

i 
b (T ) � m 

i 
b ′ (T ) = 

1 

K 

[ m 

i 
b (T ) m 

i 
b ′ (T ) + m 

i 
b (T ) m 

i 
b ′ (U) + m 

i 
b (U) m 

i 
b ′ (T )] (4)

Similarly, the belief function computed by r regarding item i ’s untrustworthiness after having consulted two bootstrappers

b and b ′ is given in Eq. (5) . 

θ i 
r (N) = m 

i 
b (N) � m 

i 
b ′ (N ) = 

1 

K 

[ m 

i 
b (N ) m 

i 
b ′ (N ) + m 

i 
b (N) m 

i 
b ′ (U) + m 

i 
b (U) m 

i 
b ′ (N)] (5)

Finally, the belief function computed by r on the cloud service i being either trustworthy or untrustworthy (i.e., uncertainty)

after having consulted two bootstrappers b and b ′ is given in Eq. (6) . 

θ i 
r (U) = m 

i 
b (U) � m 

i 
b ′ (U ) = 

1 

K 

[ m 

i 
b (U ) m 

i 
b ′ (U )] , where: (6)

K = 

∑ 

h ∩ h ′ = ∅ 
m 

i 
b (h ) m 

i 
b ′ (h 

′ ) (7) 

Note that the values produced by the different belief functions are real-valued numbers between 0 and 1, i.e., θ i 
r (T ) ,

θ i 
r (N) , θ i 

r (U) ∈ [0 , 1] . Finally, the decision of the recommender system regarding a certain newcomer item i is taken by

computing the beliefs in i ’s trustworthiness θ i 
r (T ) and untrustworthiness θ i 

r (N) and comparing them, i,e., if θ i 
r (T ) > θ i 

r (N) , i

is deemed trustworthy; otherwise, i is considered as being untrustworthy. 

3.4. Credibility update mechanism 

The credibility scores of the bootstrappers need to be constantly updated in order to maintain the authenticity of the

bootstrapping process. Specifically, honest bootstrappers should get their credibility values increased and dishonest boot- 

strappers should undergo a decrease in their credibility values [40] . We propose in Eq. (8) a credibility update mechanism

by which the recommender system r updates its credibility belief φ( r → u ) toward every user u that has submitted a boot-

strapping endorsement regarding a newcomer cloud service i upon the request of r . 

φ(r → u ) = 

{
min (1 , φ(r → u ) + X ) , if C1 

| φ(r → u ) − Y | , if C2 

(8) 

where X = max (θ i 
r (T ) , θ i 

r (N)) , Y = min (θ i 
r (T ) , θ i 

r (N)) , and C1 and C2 ar e two conditions such that: 
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C1. R (u, i ) ∈ { T } & θ i 
r (T ) > θ i 

r (N) or R (u, i ) ∈ { N} & θ i 
r (T ) < θ i 

r (M) 

C2. R (u, i ) ∈ { T } & θ i 
r (T ) < θ i 

r (N) or R (u, i ) ∈ { N} & θ i 
r (T ) > θ i 

r (N) 

The basic idea of Eq. (8) is to update the credibility score of each bootstrapper u proportionally to the difference be-

tween her submitted endorsement R ( u, i ) on cloud service i and the final decision yielded by the DST-based aggregation

mechanism. In this way, the users whose endorsements converge to the final decision of the recommender system receive

an increase in their credibility scores and those whose endorsements are far from the final decision undergo a decrease in

their credibility scores. This process is of prime importance to guarantee the honesty of the bootstrapping process since the

performance of the DST aggregation technique is highly dependent on the credibility scores of the endorsers. 

3.5. Incentive mechanism and participation motivation 

In order to motivate the users to participate in the recommendation process, we propose in this section an incentive

mechanism which links the participation of the users with the number of inquiries that they are allowed to make. Initially,

all users have an equal amount of inquiries that they are allowed to make from any other user. This amount is then updated

during the recommendation process as shown in Eq. (9) . Specifically, every certain period of time, the number of inquiries

that a user x is allowed to make from any other user s get increased in terms of the number of inquiries coming from s that

x has answered, as well as the credibility score of x believed by s , i.e., 

Inq (x → s ) = Inq (x → s ) + ( | E(x → s ) | + � | E(x → s ) | × Cr(s → x ) 	 + 1) (9)

In Eq. (9) , Inq ( x → s ) denotes the total number of inquiry requests that x is allowed to make from s , | E ( x → s )| denotes

the number of recommendations that x has answered in favor of s , and Cr ( s → x ) denotes the credibility score of user x

believed by user s . In this way, the users that refuse to participate in the recommendation process would, over time, end up

being unable to make any request from any other user. In addition, by linking the number of inquiries with the credibility

score of the recommender user, we aim at motivating those users to provide honest opinions. 

4. Experimental evaluation 

4.1. Experimental setup and datasets 

To evaluate the performance of our solution, we conduct a series of experiments on real trust and cloud services datasets.

The first part of the experiments is dedicated to measuring the accuracy of the proposed approach in terms of generating

credible initial trust scores on a real cloud services dataset. The second part provides a comparison between our proposed

bootstrapping solution and two existing approaches, namely the MoleTrust algorithm proposed in [22,23] and the users

grouping approach proposed in [20] . The third part is introduced to evaluate the performance of our solution in the presence

of Sybil, camouflage, and whitewashing attackers that try to manipulate the endorsement process compared to the MET

model proposed in [13] . To carry out the first set of experiments, we employed a real cloud services dataset obtained from

CloudHarmony 5 . The dataset records 187 transactions of 53 cloud services owned by renowned providers such as Amazon

and Google. To derive recommendations on the services, several factors such as provider’s name, deployment area, promised

availability, actual availability, promised throughput, actual throughput, and number of outages are taken into consideration.

Specifically, the availability, throughput, and number of outages have been evaluated for a period of thirty days and the

average of each metric has been computed and recorded in the dataset. The purpose is to quantify the truthfulness of the

cloud providers in committing to their Quality of Service (QoS) promises agreed upon in the Service-Level Agreement (SLA)

made with customers and hence decide on whether the underlying service should be recommended to users as trustworthy

or untrustworthy. 

To conduct the second set of experiments which aims at comparing the performance of our solution w.r.t the MoleTrust

approach [22,23] and the users grouping approach [20] , real-world trust data from the Epinions 6 large Web community are

employed. Epinions allows users to express their opinions regarding a wide variety of items and services (e.g., movies, cars,

etc.) in the form of numeric ratings from the interval [1,5], with 1 being the rating which represents the least satisfaction

level and 5 being the rating which represents a full satisfaction level. Epinions allows users as well to rate each other on

the basis of the meaningfulness of their submitted ratings. The dataset consists of approximately 140,0 0 0 items and services

rated by 50,0 0 0 users, where a total of ≈ 660, 0 0 0 reviews are collected [23] . We chose to use Epinions when comparing

with other approaches due its large-scale nature, which allows us to better test the generalizability of the studied solutions.

In the third series of experiments, we compare our solution with the MET recommendation-based trust model proposed

in [13] under several attack scenarios. The objective of MET is to derive the optimal trust network that provides the most

accurate estimation of sellers’ reputation scores in duopoly environments. To carry out these experiments, we consider a

similar environment to that considered in [13] by simulating three types of attacks that can be launched by consulted

advisors to mislead the recommendation-based trust establishment process (i.e., Sybil, camouflage, and whitewashing) and
5 http://cloudharmony.com/ . 
6 http://www.epinions.com/ . 

http://cloudharmony.com/
http://www.epinions.com/
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Fig. 2. Bootstrapping accuracy: Our bootstrapping mechanism achieves high accuracy rate (CloudHarmony). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

setting the percentage of attackers to 30% of the total number of advisors. We compare both approaches in terms of Mean

Absolute Error (MAE), which is computed as follows: MAE(i ) = 

| T rust(i ) − ˆ T rust(i ) | 
| A | , where Trust ( i ) is the actual trust score of

item i , ˆ T rust(i ) is the trust value of item i estimated by the trust model, and | A | is the number of consulted advisors. Note

that the actual trust score of each item is available in the Epinions dataset. In Sybil attacks, dishonest advisors generate

several fake identities in an attempt to manipulate the trust aggregation process by submitting a large number of dishonest

recommendations. In camouflage attacks, attackers try to fool the trust system by providing honest recommendations in the

beginning to build good credibility scores and then start to submit dishonest recommendations. In whitewashing, dishonest

advisors try to clear their bad credibility history through continuously creating new identities. 

The machine learning classifier has been trained on the datasets following the k-fold cross-validation approach (with

k = 10 ) [31] . According to this approach, the dataset is divided into k subsets, where each of these subsets is selected every

time to be the test set and the other k − 1 subsets are combined together to serve as the training set. Subsequently, the

accuracy of the classifier is derived through computing the average error across all the k trials. The main benefit of this

training approach lies in its ability to minimize the bias of the classification results toward the dataset’s structure, as each

data sample is forced to take part of the test set exactly once and of the training set k − 1 times. The experiments have been

conducted using Matlab in a 64-bit Windows 7 environment on a machine equipped with an Intel Core i 7 − 4790 CPU 3.60

GHz Processor and 16 GB RAM. Note finally that our source code is available at the following link https://github.com/gaith7/

Recommendation . 

4.2. Results and discussion 

Fig. 2 a is introduced to show the optimal pruning level that minimizes the overfitting of the decision tree classifier

and hence maximizes the accuracy. Specifically, when the resubstitution error is smaller than the cross-validation error, this

means that the structure of the tree overfits the training data (i.e., the accuracy of the classifier is bound to the specific

content of the training data and might achieve less performance when new data is encountered). The optimal tree size

which best minimizes the overfitting and generalizes to different kinds of data is the one that gives the least cross-validation

error. According to Fig. 2 a, we notice that a decision tree consisting of three branches achieves the least cross-validation

error and hence the best classification performance. Therefore, we adopt such a three-branch decision tree in the rest of our

simulation. 

To assess the accuracy of the proposed bootstrapping mechanism using the CloudHarmony dataset, we present in Fig. 2 b

and Fig. 2 c the Receiver Operating Characteristic (ROC) curves [7] obtained after having applied our solution to predict the

initial trust scores of the involved cloud services. Note that the ground truth (i.e., whether a certain service is trustworthy

or not) is determined in the dataset using a binary status attribute which is obtained through comparing the availability and

throughput promised by the providers in the SLA and those actually received after having run the cloud services for a whole

month. In these Figures, specificity indicates the percentage of negatives identified as such and sensitivity indicates the per-

centage of positives recognized as such. In Fig. 2 b, the objective is to examine the accuracy of our bootstrapping mechanism

in identifying untrustworthy services as such. Hence, sensitivity represents in this case the percentage of untrustworthy

services that are correctly identified as being untrustworthy and 1 −specificity represents the percentage of untrustworthy

services that are mistakenly classified as being trustworthy. Moving to Fig. 2 c where the purpose is to examine the accu-

racy of our bootstrapping mechanism in identifying trustworthy services as being so, sensitivity denotes in this case the

percentage of trustworthy services correctly identified as such and 1 − specificity represents the percentage of trustworthy

services misclassified as being untrustworthy. An ideal case would be to have a percentage of 100% for both sensitivity and

specificity. 7 This case would be graphically translated into a point whose coordinates are (0, 1). In the same context, a di-
7 Note that a percentage of 100% for specificity is equivalent to a percentage of 0% for 1 −specificity. 

https://github.com/gaith7/Recommendation
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Table 3 

Performance comparison between our solution, the MoleTrust 

[22,23] , and users grouping [20] approaches (Epinions). 

Our Solution MoleTrust Grouping 

Accuracy 86.23% 59.64% 61.15% 

Specificity 91.78% 56.86% 59.84% 

Precision 89.66% 21.99% 24.24% 

Recall (or sensitivity) 80% 75.61% 68.09% 

F-Measure 84.55% 34.07% 35.75% 

Table 4 

Mean Absolute Error (MAE) comparison of items’ 

initial trust estimation between our solution and 

MET [13] (Epinions). 

Our Solution MET 

Sybil 0.05 ± 0.02 0.09 ± 0.06 

Camouflage 0.18 ± 0.03 0.01 ± 0.00 

Whitewashing 0.06 ± 0.03 0.05 ± 0.03 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

agonal line represents a worthless classifier that is equivalent to a random guess. The Area Under the Curve (AUC) measure

[3] quantifies our bootstrapping mechanism’s accuracy, where the closest the value of AUC to 1 is, the more accurate our

bootstrapping mechanism would be. By observing Fig. 2 b and 2 c, we can notice that our solution achieves a high accuracy

level up to 98.5% in identifying untrustworthy services as such ( Fig. 2 b) and a high accuracy level up to 98.3% in identifying

trustworthy services as such ( Fig. 2 c). 

Next, we compare the performance of our solution with the MoleTrust [22,23] and users grouping [20] approaches in

terms of accuracy, precision, recall (or sensitivity), specificity, and F-measure. The purpose is to study how well each of

the compared solutions is able to perform in the presence of such malicious parties. Accuracy is the ratio of correctly

classified observations to the total number of observations. Table 3 shows that our solution achieves a high accuracy level

of 86.23% in classifying newly deployed items/services compared to 59.64% for the MoleTrust and 61.15% for the grouping

approach. As for the specificity (defined earlier), our solution achieves a specificity level of 91.78% compared to 56.86% for

the MoleTrust and 59.84% for the grouping approach. Precision is the ratio of correctly classified positive samples to the

total number of samples predicted as positive. In simple words, precision attempts to answer the following question: Of

all items/services that are classified as trustworthy, how many are actually trustworthy?. We notice from Table 3 that our

solution achieves a high precision percentage of 89.66% compared to 21.99% for the MoleTrust and 24.24% for the grouping

approach. Recall or sensitivity is the proportion of actual positives that are identified correctly. This metric attempts to

answer the following question: Of all the trustworthy items/services, how many did we actually identify as such?. According

to Table 3 , our bootstrapping solution achieves a recall percentage of 80% compared to 75.61% for the MoleTrust and 68.09%

for the grouping approach. F-measure is the harmonic average of precision and recall and is computed as follows: F −
measure = 2 × precision ×recall 

precision + recall 
. The F-measure yielded by our solution is 84.55% which is high enough since both the precision

and recall percentages are high in our solution, whereas the F-measure yielded by the MoleTrust and grouping approaches

is low (i.e., 34.07% and 35.75% respectively) which is due to their low precision (21.99% and 24.24% respectively). 

The reasons behind the improvements brought by our solution compared to the MoleTrust and users grouping ap-

proaches can be summarized as follows. Both approaches employ simplistic techniques (averaging in the case of MoleTrust

and weighted sum in the case of the grouping approach) to combine the collected recommendations. These techniques

are known to be vulnerable to malicious recommenders that try to manipulate the aggregate final decisions through sub-

mitting misleading recommendations. The situation becomes even worse in case of collusion attacks whereby malicious

recommenders collude to provide a large number of deceptive opinions to promote/demote some newly deployed items.

Per contra, we propose in our work a comprehensive aggregation technique that employs DST to discourage untruthful

reporting and propose also a credibility update mechanism that constantly updates the weights assigned to the collected

endorsements on the basis of the credibility scores of the endorsers. The second advantage of our solution lies in the ma-

chine learning approach that we propose, which improves the accuracy of the initial endorsements through analyzing the

observed features of the newly deployed items and those of the already deployed ones to make the best possible predictions.

Now, we compare our solution with the MET trust model [13] . The objective of MET is to derive the optimal trust

network that provides the most accurate estimation of sellers’ reputation scores in duopoly environments. This framework is

selected in order to independently verify the effectiveness of our solution against a richer set of possible attacks. We notice

from Table 4 that our solution decreases the MAE compared to MET in the presence of Sybil attacks. In fact, MET is based

on the idea of generating various networks of advisors with different trust values using evolutionary operators and then

keeping the best network that consists of advisors having the highest trust values. However, even in the optimal network

of advisors, there is still some chance of encountering a minority of advisors that might provide inaccurate endorsements.

Worse, in the case of Sybil attacks, such a minority might even become a majority by creating a large number of fake
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Fig. 3. The effects of Sybil, camouflage, and whitewashing attacks on the MAE enatailed by our solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

identities. In such cases, MET provides no countermeasures against such advisors. On the other hand, in addition to operating

at the endorsements’ collection level, our solution operates as well at the trust aggregation level to further improve the

protection against dishonest opinions. Specifically, in our approach, we broadcast the endorsement requests to the set of

available advisors and allow these advisors to self-assess their degrees of accuracy prior to submitting their endorsements.

Thereafter, we aggregate the endorsements coming from advisors having different levels of credibility using the Dempster-

Shafer method, which is mainly influenced by the credibility of the advisors, rather than their number. This makes our

solution quite resilient to Sybil attacks and efficient even in scenarios in which dishonest advisors might form the majority

[40] . 

On the other hand, in camouflage attacks, MET entails lower MAE compared to our solution. The reason is that in such a

type of attacks, dishonest advisors initially provide honest endorsements to build up good credibility scores, prior to starting

their dishonest endorsements. This makes our trust aggregation method, which is mainly influenced by the credibility scores

of the advisors, to be vulnerable to such attackers for a short period of time (i.e., the period at which dishonest advisors

switch their behavior and start providing misleading endorsements). When it comes to whitewashing attacks, our solution

and MET show relatively similar resilience to such attacks. In fact, MET keeps only the network of advisors with the most

suitable trust values according to some evolutionary operators, which makes it hard for whitewashing advisors to get into

these networks. In our solution, even though some dishonest advisors might clear their bad credibility history and rejoin

the network again, such newcomer advisors aren’t expected to have high credibility values as compared to those honest

advisors who have strived to build and retain high credibility scores. Consequently, the presence of camouflage attackers

does not have a significant impact on the performance of our solution. 

In Fig. 3 , we study in more detail the effects of each of the three types of attacks on our solution. We can notice from

Fig. 3 a that Sybil attacks have no effect on our solution, for the reasons mentioned above. From Fig. 3 b, we can see that up

to the fifth iteration (the period during which camouflage attackers provide honest endorsements to gain high credibility

scores), the MAE entailed by our solution is low. At the fifth iteration (the time moment at which camouflage attackers start

to change their behavior by providing dishonest endorsements), the MAE of our solution is reported to be relatively high

(i.e., 0.18). Starting from the sixth iteration, our solution starts to recognize the camouflage attackers and decrease their

credibility, thus leading to gradually improving the performance and decreasing the MAE. Finally, from Fig. 3 c, we notice

that whitewashing attacks have a small effect on the performance of our solution for the reasons mentioned in the previous

paragraph. 

Finally, in Fig. 4 , we compare our solution with that proposed in [26] in terms of Mean Absolute Error (MAE) and Root

Mean Square Error (RMSE) on the CloudHarmony dataset. We inject in this set of experiments a number of newly registered

users (15% of the total number of users seeking for recommendations) to study the performance of the compared approaches

in such a complex scenario. As explained earlier, MAE quantifies the average difference between the predicted trust scores

of the cloud services being bootstrapped and the actual trust scores of these services, proportionally to the number of

consulted advisors. RMSE quantifies the standard deviation of the prediction errors and is computed as follows: RMSE(i ) =√ ∑ n 
i =1 ( 

| T rust(i ) − ˆ T rust(i ) | ) 2 
| A | , where Trust (i) is the actual trust score of item i, ˆ T rust(i ) is the trust score of item i estimated

by the bootstrapping model, and | A | is the number of consulted advisors. The first observation that can be drawn from

the figure is that increasing the number of advisors leads to decreasing both the MAE and RMSE. The second observation

is that our solution outperforms that of [26] in minimizing the prediction errors. More specifically, the main limitation

of [26] is that it relies heavily on the similarity between existing users in the lattice representation to derive appropriate

recommendations. This degrades its performance when extreme (yet realistic) scenarios in which newly registered users

seek recommendations on newly deployed services. Our solution, on the other hand, does not rely on users’ past preference

to derive recommendations on newcomer cloud services, which makes it powerful in such scenarios. 
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Fig. 4. Our solution decreases the MAE and RMSE compared to [26] in the presence of newly registered users seeking recommendations on newcomer 

cloud services. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion and future work 

Trust bootstapping is still an open research challenge in the context of recommender systems and beyond. We proposed

in this paper a solution based on endorsements from peers. Specifically, we advanced trust bootstrapping mechanism which

consists of (1) a machine learning strategy to obtain endorsements regarding newcomer cloud services for which no evi-

dence of their former behaviour is available (2) an endorsements aggregation technique that is robust to dishonesty and (3)

a credibility update mechanism for the endorsers. The proposed solution can be integrated into any existing recommender

system context to improve and secure its decisions. Experiments conducted using the CloudHarmony cloud services dataset

and the Epinions trust dataset reveal that our proposed bootstrapping mechanism improves the accuracy of assigning initial

trust scores for newcomers items up to ≈ 26% compared to the ModelTrust [22,23] , users grouping [20] and fuzzy formal

concept analysis [26] approaches and is thus a promising solution. We have also studied the performance of our solution in

comparison with the MET model [13] in the presence of Sybil, camouflage and whitewashing attackers. The results revealed

that our solution shows more resiliency to Sybil attacks, similar resiliency to camouflage attacks and slightly less resiliency

to whitewashing attacks compared to MET. 

Several issues are important to continue to consider for future work. The first is that of identity management, which is

important to verify the identities of the endorsers and prevent identity impersonation and/or duplication. To address this

issue, we plan to integrate blockchain-based solutions such as uport 8 into our solution. Thus, prior to submitting endorse-

ments, users would be asked to create uport identities (if not already done). Uport then generates a new asymmetric key

pair (i.e., private and public keys) for users, which allows the recommender system (having a uportID as well) to verify

users’ identities. The ethereum blockchain would include controller contract, proxy contract and application contract and

would interact both with the Uport user device and the recommender system. Another issue is addressing cases where

peers have subjective differences. In the future, we plan to extend our solution to support situations wherein users might

use different evaluation functions, thus learning these functions in a manner similar to that of the BLADE system [32] . This

would expand the applicability of our solution and improve the endorsements’ accuracy. Another promising direction would

be to investigate the effectiveness of applying a multi-criteria clustering approach [17,18] that groups users based on sev-

eral criteria such as credibility scores, resource availabilities and geographical location. Such an approach is anticipated to

help the recommender system better select the appropriate groups of users to participate in each particular bootstrapping

request. Finally, we plan to implement the proposed bootstrapping solution using the federated learning concept [15] where

users can use their mobile phones to collaboratively learn a shared recommendation prediction model. 
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