
Computers and Electrical Engineering 44 (2015) 200–217
Contents lists available at ScienceDirect

Computers and Electrical Engineering

journal homepage: www.elsevier .com/ locate /compeleceng
AOMD approach for context-adaptable and conflict-free Web
services composition q
http://dx.doi.org/10.1016/j.compeleceng.2015.04.004
0045-7906/� 2015 Elsevier Ltd. All rights reserved.

q Reviews processed and recommended for publication to the Editor-in-Chief by Associate Editor Dr. H. Vahdat-Nejad.
⇑ Corresponding author.
Hanine Tout a, Azzam Mourad a,⇑, Chamseddine Talhi b, Hadi Otrok c

a Department of Computer Science & Mathematics, Lebanese American University, Lebanon
b Department of Software Engineering & Information Technology, École de Technologie Supérieure, Canada
c Department of Computer Engineering, Khalifa University of Science, Technology & Research, United Arab Emirates

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 22 April 2015

Keywords:
Web services composition
BPEL
Aspect-Oriented Programming
Aspect-oriented modelling
Adaptability
Formal verification
BPEL or Business Process Execution Language is so far the most important standard lan-
guage for effective composition of Web services. However, like most available process
orchestration engines, BPEL does not provide automated support for reacting according
to many changes that are likely to arise in any Web services composition, like downtime
services, modifications in the business logic or even new policies to govern the composi-
tion. Also low-level specification of these new changes, which would be integrated at
runtime in the BPEL process, will be far from being used conveniently. Moreover, the com-
plexity of interaction in composite Web services and the diversity of rules and policies can
lead to critical behavioral conflicts. We propose in this paper AOMD, a novel aspect-
oriented and model driven approach that defines new grammar to address both
adaptability and behavioral conflicts problems, and offers extension for WS-BPEL meta-
model for high level specification of aspects. Further, we formally verify our proposition
and we present real life case study, examples and experimental results that demonstrate
the feasibility and effectiveness of our work.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Web services composition is emerging as a universal technology for integrating distributed and heterogeneous services
over the internet in order to consolidate business applications across organizational boundaries [1]. BPEL or Business Process
Execution Language [2] is so far the most important standard language for effective composition of Web services.
Nonetheless, today’s business environments are challenged by the need for continuous adaptation of business processes
in order to meet with many changes that are likely to arise in any Web services composition after deployment, such as
downtime services, modifications in the business logic or even new policies to govern the composition. Existing Web
service-based process composition approaches such as BPEL need to be redeployed in order to be adapted. Process re-
deployment generates downtime for systems since all services should stop until the modification process is done and even
lead to possible loss of information about on-going transactions. The only changes possible at runtime are the bindings to
partner links, yet not only they must be predefined at deployment-time but also cannot accommodate with all these types
of changes. This problem has triggered active research efforts and achievements [3–8] that leverage Aspect-Oriented
Programming (AOP) to address this limitation. In AOP, new behaviors, rules and security policies can be defined

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compeleceng.2015.04.004&domain=pdf
http://dx.doi.org/10.1016/j.compeleceng.2015.04.004
http://dx.doi.org/10.1016/j.compeleceng.2015.04.004
http://www.sciencedirect.com/science/journal/00457906
http://www.elsevier.com/locate/compeleceng

H. Tout et al. / Computers and Electrical Engineering 44 (2015) 200–217 201
independently as aspects [9], then weaved based on one of the weaving technologies such as AspectJ [10], and dynamically
activated in the Web services composition at runtime.

Nevertheless, these approaches suffer from several limitations. First, [3,4,6,7] do not provide effective constructs to define
context-aware aspects that can make the process adaptable with the state changes of predefined variables in the composi-
tion. Following these approaches, developers need to access the BPEL code and pass over the list of predefined messages to be
aware of the existing variables, in order to formulate conditions of context-aware aspects. Such requirement entails some
restrictions on the main purpose of using AOP, which is the separation of cross-cutting concerns, and limits the usefulness
of that paradigm. Second, due to the complexity of interaction between composed Web services and diversity of rules and
policies, conflicts are more likely to arise, a problem that [3,4,6,7] did not address. For instance, assuming that ‘‘Encryption’’
and ‘‘Logging’’ aspects are to be added after invoking particular Web service in the BPEL process; as defined in [11], the con-
flict problem arises in case the logging aspect is executed before the encryption aspect, where critical data will then be
logged without being encrypted, leading to security flaw and rule violation in the system. Third, the specification of aspects
in [3,4,6–8] is done at lower level making it way far to be used conveniently and friendly. Finally, other than performance
analysis, none of these approaches has verified their proposition to make sure that all the specified aspects have been
weaved correctly in the process as intended, the process is still operating correctly and remains flaw, conflict and deadlock
free after the weaving.

We propose in this paper AOMD, a novel aspect-oriented and model driven approach that defines new grammar to
address both adaptability and behavioral conflicts problems, and offers extension for WS-BPEL meta-model for high level
specification of aspects. Further, we formally verify our proposition after weaving the aspects in the BPEL process. The ver-
ification can be done also at previous stage i.e., at the proposed model level, however this is out of the scope of this paper and
we leave it for future work. We also present real life case study, examples and experimental results. All these along with the
verification demonstrate the feasibility and effectiveness of our work.

This work offers the following contributions:

1. New Aspect-Oriented grammar to reach highly context-adaptable and conflict-free Web services composition: we first
extend the Aspect-Oriented language, that we proposed previously [3], with new grammar in order to reach high adapt-
ability by offering the ability to define context-aware aspects that allows the process to react dynamically with the state
changes of predefined variables in the composition without the need to manually explore the original process code. Not
only that, the new grammar is also able to solve the behavioral conflict that arises between different aspects applied at
the same point in the business process of the Web services composition. The new grammar defines an order between
them to ensure conflict-free composition (Section 3.1).

2. New aspect-oriented model to allow high level specification of aspects (i.e., behaviors, business rules and security poli-
cies) to be hardened in the BPEL process of the Web services composition: The model has not been presented previously.
In our previous work [3], the specification of the aspects, that will be weaved in the BPEL process of Web services
composition had to be done at lower level, making it way far to be used conveniently and friendly (Section 3.2).

3. Formal verification of the proposed approach: To the best of our knowledge, none of the relevant approaches that we pre-
sent in the literature review leveraging AOP to BPEL has verified that all the specified aspects have been weaved correctly
in the process as intended, the process is still operating correctly and remains flaw, conflict and deadlock free after the
weaving (Sections 5 and 6.3).

4. Prototype of the proposed approach: We integrated it in a well-known and widely used commercial BPEL development
environment, Eclipse. Please note that the prototype of the framework has passed through a complete process of testing
and reviews by Eclipse BPEL project leader and members before getting accepted as part of their commercially used tool.
To download and get additional information about the developed framework, please visit the following two links: http://
www.azzammourad.org/#projects and http://www.eclipse.org/bpel/team.php. You can refer to Section 4 for more details
(Section 4).

The rest of the paper is organized as follows. Section 2 is dedicated to discuss some related works. Section 3 is devoted for
the proposed approach. Section 4 illustrates the framework design and implementation. Section 5 describes the verification
objectives as well as the verification mechanism. Section 6 presents a full case study including experimental results. Finally,
Section 7 concludes the paper and draws some future research directions.
2. Related work

In what follows, we discuss the existing approaches that leverage AOP to provide secure and adaptable Web services
composition, and we expose their limitations.

AspectBPEL [3] is introduced as an Aspect-Oriented Programming language that is built on top of the current AOP tech-
niques. This language is adapted to BPEL in order to allow the specification of BPEL security aspects. The approach proposed
Tout et al. [4] is based on a synergy between XrML security license, Aspect-Oriented Programming (AOP), and BPEL. It offers
the ability to define grants within licenses, associate them with the offered activities, and transform them automatically into

http://www.azzammourad.org/#projects
http://www.azzammourad.org/#projects
http://www.eclipse.org/bpel/team.php

202 H. Tout et al. / Computers and Electrical Engineering 44 (2015) 200–217
AspectBPEL aspects to include and update non-functional requirements such as license grants validation into a BPEL process,
at runtime, and without affecting its business logic.

Hamdi et al. extended WSPL to allow context-based specification of policy rules [6]. They build a synergy between context
and AOP concepts in order to integrate context-aware WSPL policies in BPEL processes of composite Web services. They pro-
vide an aspect-oriented policy tool, which allows service providers to integrate context-aware policies into the BPEL code.
Yet these approaches [3,4,6] did not address the behavioral conflicts between the aspects, a critical problem that we were
able to prevent in our work. Also, the specification of aspects is done at lower level, which makes them way far to be used
conveniently and friendly. Finally, none of these works have verified their approaches.

AO4BPEL [7], is an aspect oriented extension for BPEL, which is able to offer modularity and adaptability to workflow pro-
cesses. Yet, it has several limitations. First, it requires the use of a special orchestration engine to manage the resulting BPEL
process, which cannot be executed on standard BPEL execution engines. Second, AO4BPEL does not address the behavioral
conflict problem, and does not include verification of the proposed approach to prove that all the specified aspects have been
weaved correctly in the process as intended, the process is still operating correctly and remains flaw, conflict and deadlock
free after the weaving. As presented throughout this paper, we were able to overcome all these limitations. Finally, their
approach imposes lot of overhead since it performs a check on each activity in the process to determine whether or not their
aspect code is associated with it. However, our experimental results that have demonstrated that the overhead imposed by
our approach is negligible.

Braem et al. [12] has proposed a pointcut language that addresses all BPEL activities and allows selecting them as join
points based on their properties specified in the BPEL code, while the authors extended later the approach with advanced
‘‘Stateful aspects’’ in order to denote the crosscutting concerns that depend on the past states of the program. The approach
offers extensibility to WS-BPEL and the ability to track the state of the process during its execution [8]. However, one of the
key issue is that during the weaving, many instrumentation pieces of code that are not part of the business logic are injected
into the process to evaluate the protocol, the latter should be compared at runtime with the order of all states changes, both
facts generate lot of run-time overhead as they confirmed in their paper. Per contra, in our work, any verification is done
selectively at specific pointcuts in the BPEL process rather than unnecessary checks at each invokes. Also, in our proposition,
only the condition that activates the aspect is checked rather than tracing the whole process state that includes tracking of
all the events.

Differentially from the work presented by Patiniotakis et al. [13] that is devoted for BPMN, the approach we are proposing
is for BPEL. The authors extend AO4BPMN with new elements like ‘‘replace’’ and ‘‘bypass’’ relation between advices and pro-
cess models. Yet, they did not make it clear if there it is possible to define parallel advices for the same join point, while we
made it clear through example that it is possible to define and weave more than one aspect at the same point in the Web
services composition (e.g., Discount, Encryption and Logging). Now assuming that they support parallel advice, there will
be inconsistency in their proposition when an advice wants to ‘‘replace’’ the join point, and another one tries to ‘‘bypass’’
it at the same time. However, as demonstrated in the paper, our approach is able to solve this with the new construct of
E-AspectBPEL. Their approach enables also the detection of situations that require process adaptation. Likewise, we are able
to achieve this, one can define aspects to monitor the process and react accordingly.
3. Proposed approach

We start this section by presenting both, the proposed approach schema and a comparison between this work and our
previous achievement [3] to shed the light on the new contributions. The schema in Fig. 1 depicts the main components
and contributions of our proposed approach.
Fig. 1. Approach schema.

H. Tout et al. / Computers and Electrical Engineering 44 (2015) 200–217 203
We first extend the Aspect-Oriented language (see Section 3.1), that we proposed previously [3], with new grammar in
order to reach high adaptability by offering the ability to define context-aware aspects that allow the process to react
dynamically according to the state changes of predefined variables in the composition accommodating with the changes
in the business logic and even in the security policies that govern the composition. All without the need to manually explore
the original process code. Not only that, the new grammar is also able to solve the behavioral conflict that arises between
different aspects applied at the same point in the business process of the Web services composition. The new grammar
defines an order between them to ensure conflict-free composition. Moreover, in our previous work, the specification of
the aspects, that will be weaved in the BPEL process of Web services composition, had to be done at lower level making
it way far to be used conveniently and friendly. However, in this work we offer Aspect-Oriented extension for WS-BPEL
meta-model to allow the high level specification of aspects (see Section 3.2). Furthermore, opposed to our previous work that
only included performance analysis of the composition after weaving the specified aspects; we add in this work a formal
verification of the proposed approach proving that all the specified aspects have been weaved correctly in the process as
intended, the process is still operating correctly and remains flaw, conflict and deadlock free after the weaving (see
Sections 5 and 6.3). We keep both the implementation and the verification to separated sections.
3.1. E-AspectBPEL: AspectBPEL extension

In previous work, we have developed ‘‘AspectBPEL’’ a language built on top of the AOP paradigm and adapted to BPEL.
AspectBPEL is an Aspect-Oriented language that allows the definition of BPEL security policies, behaviors and business rules
and automatically weave them in the BPEL process. It uses notations close to those of the current AOP techniques. For more
details, you may refer to [3]. In this section, we present E-AspectBPEL, our extension to AspectBPEL, that is able to reach
higher adaptability and provide conflict-free composition.

Hereafter we present the syntactic constructs and their informal semantics. We added their equivalent in AspectJ
between parentheses. Fig. 2 illustrates the grammar of the language (new constructs are highlighted).
3.1.1. Main constructs
The main construct of the language consists of BPEL_Aspect(aspect) that represents the aspect,

BPEL_Location_Behavior(advice-pointcut) that represents the advice-pointcut within an aspect,
BPEL_Insertion_Point(before, after, or around) to specify the point where the aspect will be injected with respect to
the BPEL_Location_Identifier(pointcut) that identifies the exact joint point or sets of joint points in the process where
the aspect will be activated and finally, BPEL_Behavior_Code(advice), which contains the new behavior code that will be
weaved in the BPEL Process.
3.1.2. New constructs
3.1.2.1. Activation_Condition. Although one can specify conditions in the BPEL_Behavior_Code element using the regular
condition statement in BPEL, yet it is not possible to access the BPEL variables directly from inside that element due to
the fact that the BPEL process and the new aspects are created independently (separation of concerns concept of AOP).
Thus the need for Activation_Condition, in which one can automatically specify the predefined variable without the
need to manually access the original BPEL code and go over the messages definition to explore the variables. The expression
of the activation condition consists of the BPEL variable and its value. For instance, let us consider the case where we want to
add a new security aspect, in which a user has three chances to enter the authentication credentials (i.e. username and pass-
word), before being denied further access to the requested service of a BPEL process. The latter contains a BPEL context
Activation_Condition variable called FaultyTrials that counts the failure login attempts in the process. Consequently, the
aspect behavior (e.g., BPEL_Behavior_Code) that can block the user from accessing the service will not be activated unless
FaultyTrials reaches 3. In addition, the Activation_Condition can be a set of variables logically combined using an Operator
like ‘‘And’’ and ‘‘OR’’, rather than a single BPEL context variable. This construct offers the Web services composition, within
BPEL, a higher level of awareness and adaptability to context changes.
3.1.2.2. BPEL_Aspect_Priority. This element is used in order to identify the order between the aspects upon their weaving in
the BPEL process to avoid behavioral conflict situation. For instance, assume we have two aspects encryption and logging,
and both share the same join point in the BPEL process. Let us consider that the data should not be accessible before being
encrypted for security reasons. This requirement will be violated in case the logging aspect is triggered before the encryption
[11]. Therefore, the order between these aspects plays a significant role. Based on the BPEL_Aspect_Priority element, the
aspect having the lower priority will be weaved first in the Web services composition and dynamically activated last. In
the case of multiple aspects that have the same priority, the order among them does not formulate a concern, therefore it
is determined randomly. The idea of priority exists in aspects like AspectJ [14] and also exists in policy languages like
XACML [15] where this notation is embedded in combining algorithms among the set of policies and rules to decide which
one of them will be applied, which also make it reasonable to apply this priority-based mechanism between aspects.

Fig. 2. Grammar of E-AspectBPEL.

204 H. Tout et al. / Computers and Electrical Engineering 44 (2015) 200–217
3.2. Aspect-Oriented extension for WS-BPEL meta-model

We devise a new aspect-oriented model, as extension to the WS-BPEL meta-model, to offer high level specification of
aspects. This model-driven solution alleviates the complexity of aspects specifications imposed by the current approaches
[3,4,6–8], where aspects are hardcoded. In the proposed model, BPEL_Aspect is like a BPEL process that encompasses some
activities to define certain behavior (i.e., logical behaviors, business rule or security policies). Therefore, we define it as a sub-
class of the BPEL Process. As shown in Fig. 3, the BPEL_Aspect inherits all the properties of a regular BPEL Process. However,
it extends it with the new element priority needed to solve the conflict problem that may arise when weaving different
aspects in the BPEL process.

As illustrated in Fig. 3, the BPEL_Aspect is also composed of one or more (1..*) BPEL_Location_Behavior. This latter is com-
posed of the BPEL_Insertion_Point, BPEL_Location_Identifier and BPEL_Behavior_Code. The last element contains the BPEL
activities that will be weaved in the BPEL process, thus it inherits its properties from the BPEL Activity class. The first
two elements pinpoint the location in the BPEL process where the BPEL_Behavior_Code will be integrated. The
BPEL_Location_Identifier element extends the ExtensionActivity element with the activityName and activityType elements.
Both are mapped to an activity in the BPEL process to help identifying the BPEL_Location_Identifier. Moreover, it adds the
expression element to formulate a context-aware model. The expression element is written in XPath and generated automati-
cally based on the BPEL process variables. It defines the circumstances that should be met to dynamically activate the aspect
behavior (as explained in the Activation_Condition element in the previous section).
4. Framework design and implementation

This section is devoted for technical details about the proposed framework implementation. Our prototype, in Fig. 4, has
passed through a complete process of testing and reviews by Eclipse BPEL project leader and members before getting
accepted as part of their commercially used tool, which demonstrates the feasibility and usefulness of our approach. It con-
sists of the four modules: Modeler, Generator, Compiler and Weaver.

Fig. 3. WS-BPEL meta-model extension.

Fig. 4. E-AspectBPEL Eclipse plug-ins.

H. Tout et al. / Computers and Electrical Engineering 44 (2015) 200–217 205
4.1. Modeler

This modeler not only allows the specification of new behaviors, business rules and security policies, but also context-
aware polices to reach high adaptability of Web services composition. It implements the aspect-oriented extension that
we presented in Section 3.2 to offer high level specification of aspects by offering seamless, easy and visual solution to design
the aspects requirements.
4.2. Generator

This generator automatically generates the code corresponding to specified aspects. It is implemented based on the DOM
parser for XML, using the Java language. As depicted in Fig. 5, it takes the designated aspect model that must be consistent
with the proposed E-AspectBPEL Meta-Model, extracts the E-AspectBPEL nodes and formulate the E-AspectBPEL code based

206 H. Tout et al. / Computers and Electrical Engineering 44 (2015) 200–217
on our proposed language grammar. Precisely, the generator sets the name and the priority level values of the BPEL_Aspect
based on the model. Afterwards, it extracts the BPEL_Insertion_Point element. Then, it fetches the activityName and the
activityType combination to build up the BPEL_Location_Identifier element. Finally, it derives the BPEL activities nodes of
the aspect module to compose its behavior. To recall these elements in the E-AspectBPEL language, you may refer to
Sections 3.1 and 3.2.

4.3. Compiler

After writing the E-AspectBPEL language grammar using ANTLR (Another Tool for Language Recognition) V3.0 [16], we
created the corresponding compiler, which performs a syntactic and semantic check of the generated E-AspecctBPEL code
to make sure it is compatible with the new E-AspectBPEL language constructs, and also verifies the behavior code of these
aspects against the WS-BPEL schema definition [17] to ensure its correctness.

4.4. Weaver

In previous achievement [3], we developed a similar tool that allows the automatic and dynamic integration of aspects in
BPEL processes. However, in this work, we extend and upgrade this tool with three utilities. First, it supports the injection of
several aspects in the BPEL process. Second, it includes a sorting mechanism, whereby it orders these aspects based on their
priority level to avoid behavioral conflicts. It extracts the insertion point and the location identifier from the aspect code,
which pinpoint to the exact spot in the BPEL process where the aspect should be injected. Third, it allows activating dynami-
cally the aspect behavior based on the Activation_Condition element.

5. Formal verification

Other than performance analysis, none of the existing relevant works [3,4,6–8] has verified the proposed approach, which
is a remarkable limitation. Per contra, in this section, we define the essential properties that should be verified after weaving
new aspects in the Web services composition as well as the verification mechanism that we applied in order to verify our
proposition.

5.1. Verification properties

First, we have to validate that the process behavior is consistent with the intended behavior after the injection of new
aspects. For instance, if we look at the scenario in Section 6, integrating any new feature in the Web services composition
should keep the original behavior of invoking the payment service after the reservation Web services get invoked, fully
operational. Let us assume that new authentication aspect is weaved just before calling the payment service and not at
the beginning of the process. This weaving can be the result of error in the weaving process itself or mistake in the aspect
specification. In this case, an unauthenticated user will have the ability to call the reservation services, while the payment
will never get invoked. For security purposes, such sequence of transactions should be atomic, and in case of illegitimate
user, the process should roll back all previous transactions (i.e., reservations). However, BPEL does not support such flexibil-
ity. Therefore, making sure that such contradictory case will not occur will be one of the properties to be verified.

Second, we have to verify that the integration of these aspects did not cause a deadlock problem in the BPEL process and
all the activities in the composition remains reachable. For example, after integrating the authentication aspect, the process
has to preserve its ability to respond to any request made by the user despite its status (e.g., authenticated or not).
Subsequently, it should be able to always reach its final state whereby it sends an error message in case the user is not
authenticated, or another confirmation message otherwise.

Third, we have to make sure that the aspects have been weaved correctly and the process behaves as intended. For
instance, adding authentication should guarantee that only legitimate users can invoke the offered services. Even in other
situation, for example when injecting discount and logging aspects, the process should guarantee that checking for discount
will not proceed logging. Otherwise, the process will end up with erroneous values. For instance, when the discount is
applied, faulty data related to total fees will be logged.
Fig. 5. Code generation scheme.

H. Tout et al. / Computers and Electrical Engineering 44 (2015) 200–217 207
Finally, we have to prove that the conflict problem has been resolved. Taking the example of encryption and logging
aspects, the solution has to assure that the data will not be logged unless it has been encrypted first, and this through invok-
ing encryption before logging, and not vice versa. Same for the example of policies with combining algorithms First-
Applicable, the solution has to assure that the order of checking the policies is preserved. A detailed explanation is illustrated
in the case study, Section 6.3.
5.2. Formal verification mechanism

A well-known method to verify these objectives is through model checking [18–21]. In our approach, the BPEL is trans-
formed to Petri nets and the objectives are expressed computational tree logic or in LTL [22] formulas, then the model
checker verifies whether the objectives are met or not. Many approaches follow this mechanism [23,24] to analyze BPEL pro-
cesses. In our approach, the BPEL is process is transformed to open workflow nets (oWFNs), which is a formal model for BPEL
processes and eventually to PNML [25] using the BPEL2oWFN [26] tool. Petri net is a mathematically based technique for
modeling and verifying software artifacts and it provides clear and precise formal semantics, an intuitive graphical notation,
and many techniques and tools for their analysis. Recent researches indicate that Petri net is powerful enough to describe the
behavioral features of service composition, and the analysis of Web services composition based on Petri nets has been stud-
ied by many recent approaches [23,27]. Then Petri nets are converted to KTZ through Tina-selt, a conversion package in TINA
model checker [28] that we are using. KTZ is the binary format for Kripke transition system of TINA. In parallel, we map the
objectives to LTL formulas in order to be checked by the model checker. A boolean result, that reflects whether the BPEL pro-
cess fulfill the defined property, is conducted when the verification process is done.
6. Case study and experiments

To better illustrate our approach, we suggest a Travel Booking System (TBS) as a running example throughout the rest of
the paper. TBS consists of a Flight Web Service that allows the user to book a ticket on a certain flight, an Hotel Web Service
that enables the user to book a hotel room, a Car Web Service offering the ability to reserve car during the trip, and finally, a
Banking Web Service to perform online payments for the reservation fees. The user may invoke one, two or even the three
reservation Web services before getting to the online payment, therefore different scenarios might occur. However, to make
the process figure fits within the page frame, we represent the offered services by ‘‘Any TBS Booking Service’’ as depicted in
Fig. 6. Once a client invokes the TBS BPEL process, the latter assigns the request to the corresponding TBS Web service (i.e.,
Flight, Hotel or Car Web service) to invoke the relevant reservation service accordingly. Once done, it assigns the client pay-
ment information to the Banking Web service to process the payment of the booking fees. Finally, the TBS BPEL process
assigns the appropriate notification back to the client. TBS imposes invoking the payment service whenever any of the book-
ing Web services (i.e., Flight, Hotel and Car) get invoked to achieve an atomic sequence of transactions.
Fig. 6. Travel booking system.

208 H. Tout et al. / Computers and Electrical Engineering 44 (2015) 200–217
6.1. E-AspectBPEL aspect specification

In this section, we show the specification security, behavioral, and context aware aspects to be hardened in the TBS BPEL
process. Using our Modeler, the aspects behavior and their corresponding properties (i.e., priority level, location identifier,
activation condition) can be defined in a seamless manner.

6.1.1. Authentication: Security Aspect
Behavior: It determines if the user is legitimate or not by verifying the credentials entered by the user. As shown in Fig. 7,

if the authentication fails, the process assigns an appropriate error message to the BPEL output variable, forwards it back to
the user and then stops. Otherwise the process continues its execution by invoking the appropriate Web service(s).

Properties: The properties section in Fig. 7 shows the Authentication aspect properties specification. Priority level = 0,
Insertion point = After and Location identifier = receive <receiveInput>. Based on these properties, this aspect will be weaved
right after receiving the request from the user (i.e., At the beginning of the BPEL process). The priority level is neglected since
Authentication is the only aspect that will be injected at this joinpoint in the process having no effect on other aspects.

6.1.2. Encryption: Security Aspect
Behavior: It contains an invoke activity that calls the encrypt method in order to encrypt the assigned data.
Properties: As shown in Fig. 8, it has the following properties: Priority level = 2, Insertion point = Before and Location

identifier = assign <Assign Payment Info To BWS>.

6.1.3. Logging: Behavioral Aspect
Behavior: It logs the exchanged data by invoking the log method.
Properties: The following are the associated properties as presented in Fig. 9: Priority level = 3, Insertion point = Before and

Location identifier = assign <Assign Payment Info To BWS>.

6.1.4. Discount: Context-Aware Aspect
Behavior: A reduction is applied on the total booking fees by invoking applyDiscount method as shown in Fig. 10.
Properties: To benefit from this discount, the user should book a complete travel package. Thus, the activation of this

aspect is conditioned by the variable isBookCompletePackage, in the BPEL process, that must have the value true.
Subsequently, these are the properties: Priority level = 1, Insertion point = Before and Location identifier = assign <Assign
Payment Info To BWS> Activation Condition = $isBookCompletePackage = true. It is worth to mention that our framework is
responsible of parsing the original BPEL process, where the aspect will be applied, in order to extract the existing variables
to formulate a context-aware activation condition of particular aspect.

The last three aspects share the same join point in the BPEL process. This may cause a conflict problem among them if
they are not weaved in the appropriate order, and consequently lead to both security violation and erroneous data as dis-
cussed in Section 5.1. Therefore their priority levels are important.

6.2. E-AspectBPEL aspect integration

In order to integrate the pre-defined aspects in the Web services composition of the TBS process, the followings are the
steps to be followed.

� Generate E-AspectBPEL code from the design: Having the aspects specified, their corresponding code is automatically
generated using our E-AspectBPEL Generator. For space restrictions we show only one generated aspect code. Fig. 11
depicts the generated E-AspectBPEL code of the Discount aspect.
� Compile E-AspectBPEL code: The generated code is compiled to make sure that no element is missed in the aspect spec-

ification phase.
� Weave E-AspectBPEL aspect: Here comes the role of the Weaver. First, it orders the Discount, Logging and Encryption

aspects based on their priority level to prevent the conflict between them. Then, it matches the location identifier of
all the aspects with the BPEL activities. Based on the insertion types and the stated locations, these aspects are weaved
in the BPEL process. Fig. 12 shows the BPEL process after the weaving.

6.3. Formal verification

In this section, we verify the properties that we discussed in Section 5.1. Fig. 13 shows the Petri net generated from the
BPEL process of our TBS. In the Petri nets model, each activity in the process is mapped to a Petri net transition that is also
followed by a place. For example, the receive activity is mapped to transition t1 and followed by p2 that represents the state
of the system after calling this particular activity. The arrows represent the arcs in Petri net, which create a connection
between the places and the transitions. In this model, the process calls any of the TBS booking services and the online pay-
ment, and assigns a confirmation message to the user.

Fig. 7. Authentication aspect specification.

Fig. 8. Encryption aspect specification.

H. Tout et al. / Computers and Electrical Engineering 44 (2015) 200–217 209
Fig. 14 illustrates the Petri net corresponding to the resulting BPEL process in Fig. 12. The Petri net model consists of 19
transitions and 20 places. Transitions 3, 4 and 5 correspond to the Authentication aspect so that if the user is not authenti-
cated, the process sends an error message to the user and none of the Web services will get invoked. Otherwise, it grants the
user access to any of the TBS services. Finally, transitions 11, 13 and 15 correspond to the Discount, Encryption and Logging
aspects respectively. All aspects are accurately weaved in the process following the correct order and priority. This TBS pro-
cess is free of any problem. On the other hand, as a contradictory example, we created a sample of a TBS BPEL process that
reveals security violation, conflict and inconsistency problems, Fig. 15. Contrary to our process, in this example, the
Authentication aspect appears at the end of the TBS so that any user, authorized or not, can access the system services.
Such case may occur in case the reservation services need not to authenticate the client, while the latter has to be authen-
ticated to process the payment of the booking fees, which is one of the common situations. Further, the Discount, Encryption
and Logging aspects are not applied in the correct order. To start the verification, we generate the KTZ file corresponding to
each Petri net model via the TINA tool and then, we map systematically the needed properties to LTL formulae. TBS-

Fig. 9. Logging aspect specification.

Fig. 10. Discount aspect specification.

Fig. 11. Generated E-AspectBPEL code of the discount aspect.

210 H. Tout et al. / Computers and Electrical Engineering 44 (2015) 200–217

Fig. 12. Highly context-adaptable and conflict-free TBS BPEL process.

H. Tout et al. / Computers and Electrical Engineering 44 (2015) 200–217 211
Original.ktz corresponds to the Petri nets model in Fig. 13, TBS-Correct.ktz is generated from the Petri nets in Fig. 14 and TBS-
Flawed.ktz is conducted from the Petri nets in Fig. 15.

To help understanding the LTL formulae, we interpret the synopsis of its alphabet that is used in this case study. In unary
operators, the symbol ‘‘�’’ is used to define the ‘‘Next’’ state in the Petri nets model, ‘‘�’’ stands for ‘‘Always’’ and ‘‘�’’ stands
for ‘‘Eventually’’. In binary operators, ‘‘_’’ stands for the logical ‘‘Or’’, ‘‘!’’ represents an ‘‘Implication’’ and ‘‘:’’ for
‘‘Negation’’. For more details about the Linear Temporal Logic, its syntax, semantics and its state/event-LTL form, you
may refer to [22].

First, integrating any new behavior in the Web services composition should keep the original behavior operational and
consistent with the intended behavior. For example, our TBS imposes that the Banking Web Service must get invoked in case
any of the other Web services got invoked. However, after weaving new aspects, this rule may not hold as discussed pre-
viously. Such case is illustrated in Fig. 15, where the user will be able to invoke any of the reservation Web services. But
if he/she is not authenticated, the payment service will never get invoked, breaking the declared rule. In order to verify that
this is not the case in our model (Fig. 14), we used the LTL expressions in Table 1.

p4 and p10 in Table 1 map the places in the BPEL processes after calling any of the reservation Web services of the
TBS, while p6 and p18 correspond to the places after invoking the payment service. Accordingly, the analysis of the LTL
formulas with the model checker responses implies that in the original TBS BPEL process, in case any of the reservation

Fig. 13. Petri Nets of the original TBS BPEL process.

212 H. Tout et al. / Computers and Electrical Engineering 44 (2015) 200–217
services is invoked, the payment will get invoked. This is due to the fact that p4 will always lead to p6. However, for the
second LTL expression that examines whether invoking reservation will lead to the invoke of the payment service, the
answer is FALSE. This means that sometimes the process will not call the pay service even when other services are invoked,
which breaks the rule. This can be argued by the fact that whenever the user is not authenticated, another path
(p15 ? p17 ? p20) will be taken by the TBS process and therefore, p18 is never reached even though p4 might have been
attained. On the other hand, based on the TRUE response for the last LTL expression that corresponds to our model, p18 is
always reached whenever p10 is. Consequently, our solution has no side effect on this behavior of the Web services
composition.

Second, it is really important to make sure that weaving the security and business aspects did not cause a deadlock prob-
lem that blocks the execution of the composed services. Consequently, we have to verify that all the activities in the BPEL
process are reachable. In this example, we will show that our approach assures that the process is able to respond to any
user request. Table 2 shows the devised LTL expression used in order to achieve such verification as well as the response
of the model checker. The LTL expression, in the table, states that always p2 will eventually lead to p5, p10 or to p6,
p8, and eventually achieve p20. In other words, if it is the case of authenticated user, he/she will be able to invoke any
of the offered services and get back a confirmation from the process. Otherwise, an error message will be sent to the user.
According to the model checker, the response is TRUE, which assures that after weaving the aspects, our TBS process is able
to react according to any user request regardless his/her status ruling out any possibility of a deadlock problem.

Third, to verify that the TBS BPEL process is conflict-free, we have to prove that the aspects are weaved in the correct order
as follows: Discount, Encryption then Logging. Based on the first row in Table 3, invoking the Discount aspect mapped by
p12 is eventually followed by the Encryption invocation mapped to p14 and the latter is also followed by the Logging aspect
at p16, which reserve the correct order. On the other hand, this order is not respected in the Petri net model of Fig. 15 since
the model checker returns FALSE when verifying the same property in the second formula.

Finally, we verify that the BPEL process behaves correctly based on the Authentication, Logging and Discount aspects.
Hence, we confirm that only authenticated users can get access to the system and invoke the services offered by the Web
services composition, and we verify that the process will not fall in erroneous status by logging faulty values. Table 4 illus-
trates the used LTL expressions. In the Petri net model of Fig. 14, p5 represents the case of an authenticated user and p6 the
one of non authenticated user. p10 represents the place in the process after invoking any of the reservation Web services.
Whereas this place is mapped to p4 in Fig. 15. In both models p2 represents the place after receiving the user request. When
checking if any user can access the system in the first formula, the model checker response was FALSE. In the second formula

Fig. 14. Petri Nets of the correctly weaved TBS BPEL process.

H. Tout et al. / Computers and Electrical Engineering 44 (2015) 200–217 213
examining whether authenticated users can access the system services, the response was TRUE. Same answer when applying
similar test for non authenticated users in the third formula stating that in non of the cases, non valid users can invoke the
services. Analyzing these results assure that in our approach only authenticated users can get access to TBS. On the other
hand, the fourth formula in Table 4 shows that in the erroneous TBS BPEL process in Fig. 15, anyone is able to gain access.

Moreover, p12 and p16, p8 and p6 in the LTL formulas on rows 5, 6, 7 and 8 represent the ‘‘invoke’’ of the Discount and
Logging aspects in Figs. 14 and 15 respectively. Rows 5 and 6 assure that in our correctly weaved TBS BPEL process, always
p12 will precede p16 and in none of the cases, the inverse is applied. In other words, always the discount will occur before
the logging (in case the discount is applied) so that if the discount is applied, the correct value of the total fees will be
recorded. However, this is not the case in the contradictory process based on the model checker responses for the formulas
in rows 7 and 8.

Fig. 15. Petri Nets of a weaved TBS BPEL process enclosing security, conflict and inconsistency problems.

Table 1
Process behavior consistency verification.

KTZ file LTL expression Model checker response

TBS-Original.ktz � (p4! � p6) TRUE
TBS-Flawed.ktz � (p4! � p18) FALSE
TBS-Correct.ktz � (p10! � p18) TRUE

214 H. Tout et al. / Computers and Electrical Engineering 44 (2015) 200–217
6.4. Discussion and experimental results

As illustrated in Fig. 12, the Authentication aspect is injected at the beginning of the process to ensure that only legitimate
users are able to access the TBS services. Moreover, the Discount, Encryption and Logging aspects are weaved in the correct

Table 2
Deadlock-free and reachability verification.

KTZ file LTL expression Model checker response

TBS-Correct.ktz � (p2! � ((p5! � p10) TRUE
_ (p6! � p8))! � p20)

Table 3
Conflict-free verification.

KTZ file LTL expression Model checker response

TBS-Correct.ktz � (p12 ! � p14 ! � p16) TRUE
TBS-Flawed.ktz � (p8 ! � p10 ! � p6) FALSE

Table 4
Weaving accuracy verification.

KTZ file LTL expression Model checker response

1 TBS-Correct.ktz � (p2 ! � p10) FALSE
2 TBS-Correct.ktz � (p5 ! � p10) TRUE
3 TBS-Correct.ktz � : (p6 ! � p10) TRUE
4 TBS-Flawed.ktz � (p2 ! � p4) TRUE
5 TBS-Correct.ktz � (p12 ! � p16) TRUE
6 TBS-Correct.ktz � : (p16 ! � p12) TRUE
7 TBS-Flawed.ktz � (p6 ! � p8) TRUE
8 TBS-Flawed.ktz � : (p8 ! � p6) TRUE

Fig. 16. Process execution time with XACML policies.

Fig. 17. Process execution time with XrML licenses.

H. Tout et al. / Computers and Electrical Engineering 44 (2015) 200–217 215
order avoiding behavioral conflicts. The Discount aspect is weaved first, yet not activated unless the isBookCompletePackage
variable value is equal to true. In other words, only users who have booked a complete package, that consists of a flight ticket,
hotel room and a car can benefit from the discount promotion. This is reflected by the automatically generated If condition to
cater with this requirement. It is worth mentioning that the Weaving process is atomic. In other words, in case a compilation
error occurs in any of the related aspects (e.g., Discount, Encryption and Logging in this case), the weaving stops and prompts
the user to make changes in the erroneous model and recompile it before proceeding.

216 H. Tout et al. / Computers and Electrical Engineering 44 (2015) 200–217
Adding activities for checking policies’ rules of multiple Web services to the single process orchestrating them may
impose significant execution overhead to that process, particularly when composed together to form policies with large
number of rules. Hence, to better demonstrate the effectiveness of our approach, we find it relevant to conduct performance
analysis to measure the variation in the execution time between a BPEL process with policies enforced on the Web services
side and a BPEL process with E-AspectBPEL policies enforced at the process level, which will give a good idea about the over-
head of the proposed approach. In this regards, two experiments based on security licenses and policies have been per-
formed. The security licenses are based on XrML language and engine [29], while the security policies are based on
XACML language and Sun PDP engine [15]. We opted to use these standard languages because they are widely used in
Web services.

The first impacting factor during the experiments is the size of the BPEL process. It is determined by the number of
invokes to the distributed Web services, which is increased progressively until reaching 50 invokes. It refers to the number
of services that are called in the BPEL process. The size of a policy/aspect, which is determined by the number of pointcuts
and number of rules, has also an overhead effect on the total time of execution at each run. Modifying (i.e. increasing or
decreasing) the number of policy rules will affect equally both approaches. Hence, we have taken a constant number of rules
in all policies in order to verify the overhead in the different studied contexts. The experimental results in Figs. 16 and 17
show that the overhead imposed by our approach is less since the policies verification is done selectively at specific pointcuts
in the BPEL process rather than unnecessary checks at each invokes, which is the case of policies enforced on the Web ser-
vices side. In case of E-AspectBPEL policies at the process level, an additional impacting factor should be taken into con-
sideration, which is the time taken to compile and weave the policy. Nevertheless, it has no runtime effect since it is
performed offline.
7. Conclusion and future work

In Web services composition, many changes are likely to arise after deployment. For instances, partner services may go
down or get updated, and even new policies to govern the composition might be added. To accommodate with these
changes, today’s business environments are challenged by the need for continuous adaptation of business processes. Yet, like
other existing Web service-based process composition approaches, BPEL does not provide automated support for this end. In
this context, many existing approaches leverage Aspect-Oriented Programming to support BPEL with the needed adaptabil-
ity. However, our approach improves the related literature in several aspects. First, we offer new Aspect-Oriented grammar
that on one hand offers higher adaptability and on the other hand prevent behavioral conflicts between different aspects in
the Web services composition. Second, we offer Aspect-Oriented extension for WS-BPEL to allow high level specification of
aspects. Finally, we formally verify our proposed approach. Real life case study, illustrative examples, verification and experi-
mental results, the integration of the approach in well-known and widely used commercial BPEL development environment,
Eclipse, all demonstrate the feasibility and effectiveness of this work. As for future work, we will investigate novel model and
algorithms to verify and prevent conflicts between aspects at the specification level, a priori to their integration into the BPEL
process.

Acknowledgments

This work is supported by CNRS Lebanon, Lebanese American University (LAU), NSERC Canada and Khalifa University of
Science, Technology & Research (KUSTAR).

References

[1] Mizouni Rabeb, Serhani Mohamed Adel, Dssouli Rachida, Benharref Abdelghani, Taleb Ikbal. Performance evaluation of mobile web services. In: 2011
Ninth IEEE European conference on web services (ECOWS). IEEE; 2011.

[2] WSBPEL TC. Web services business process execution language version 2.0 <http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html> [accessed
2015.01.07].

[3] Mourad Azzam, Ayoubi Sara, Yahyaoui Hamdi, Otrok Hadi. A novel Aspect-Oriented BPEL framework for the dynamic enforcement of web services
security. Int J Web Grid Serv 2011;8(4):361–85.

[4] Tout Hanine, Mourad Azzam, Otrok Hadi. XrML-RBLicensing approach adapted to the BPEL process of composite web services. Service Oriented
Comput Appl 2013;7(3):217–30.

[5] Tout Hanine, Mourad Azzam, Yahyaoui Hamdi, Talhi Chamseddine, Otrok Hadi. Towards a BPEL model-driven approach for web services security. In:
2012 Tenth annual international conference on privacy, security and trust (PST); 2012. p. 120–7.

[6] Yahyaoui Hamdi, Mourad Azzam, Almulla Mohamed, Yao Lina, Sheng Quan Z. A synergy between context-aware policies and AOP to achieve highly
adaptable web services. Service Oriented Comput Appl 2012;6(4):379–92.

[7] Charfi Anis, Mezini Mira. AO4BPEL: an aspect-oriented extension to BPEL. World Wide Web 2007;10(3):309–44.
[8] Braem Mathieu, Gheysels Dimitri. History-based aspect weaving for WS-BPEL using Padus. In: ECOWS, Citeseer; 2007. p. 159–67
[9] Mourad Azzam, Laverdière Marc-André, Debbabi Mourad. An aspect-oriented approach for the systematic security hardening of code. Comput Security

2008;27(3):101–14.
[10] Golbeck Ryan M, Selby Peter, Kiczales Gregor. Late binding of AspectJ advice. In: Objects, models, components, patterns. Springer; 2010. p. 73–191.
[11] Durr Pascal, Bergmans Lodewijk, Aksit Mehmet. Static and dynamic detection of behavioral conflicts between aspects. Runtime Verification; 2007. p.

38–50.
[12] Braem Mathieu, Verlaenen Kris, Joncheere Niels, Vanderperren Wim, Van Der Straeten Ragnhild, Truyen Eddy, et al. Isolating process-level concerns

using Padus. Springer; 2006.

http://refhub.elsevier.com/S0045-7906(15)00132-9/h0005
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0005
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0015
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0015
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0020
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0020
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0030
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0030
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0035
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0045
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0045
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0050
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0060
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0060

H. Tout et al. / Computers and Electrical Engineering 44 (2015) 200–217 217
[13] Patiniotakis Ioannis, Papageorgiou Nikos, Verginadis Yiannis, Apostolou Dimitris, Mentzas Gregoris. An aspect oriented approach for implementing
situational driven adaptation of BPMN2.0 workflows. In: Business process management workshops. Springer; 2013. p. 414–25.

[14] Kiczales Gregor, Hilsdale Erik, Hugunin Jim, Kersten Mik, Palm Jeffrey, Griswold William G. An overview of AspectJ. In: ECOOP 2001-object-oriented
programming. Springer Berlin Heidelberg; 2001. p. 327–54.

[15] XACML TC. OASIS eXtensible Access Control Markup Language (XACML) Version 2.0 <https://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=xacml> [accessed 2015.01.07].

[16] Terence Parr. The ANother Tool for Language Recognition <http://www.antlr.org/index.html> [accessed 2015.01.07].
[17] OASIS. Schema for executable process for WS-BPEL 2.0 <http://docs.oasis-open.org/wsbpel/2.0/CS01/process/executable/ws-bpel_executable.xsd>

[accessed 2015.01.07].
[18] Mizouni Rabeb, Tahar Sofiène, Curzon Paul. Hybrid verification integrating HOL theorem proving with MDG model checking. Microelectron J

2006;37(11):1200–7.
[19] Kova Melissa, Bentahar Jamal, Maamar Zakaria, Yahyaoui Hamdi. A formal verification approach of conversations in composite web services using

NuSMV. In: Proceedings of the 2009 conference on new trends in software methodologies, tools and techniques: proceedings of the eighth
SoMeT_09. IOS Press; 2009. p. 245–61.

[20] Bentahar Jamal, Yahyaoui Hamdi, Kova Melissa, Maamar Zakaria. Symbolic model checking composite web services using operational and control
behaviors. Expert Syst Appl 2013;40(2):508–22.

[21] Kholy Warda El, Bentahar Jamal, Menshawy Mohamed El, Qu Hongyang, Dssouli Rachida. Modeling and verifying choreographed multi-agent-based
web service compositions regulated by commitment protocols. Expert Syst Appl 2014;41(16):7478–94.

[22] Bae Kyungmin, Meseguer José. State/event-based LTL model checking under parametric generalized fairness. In: Computer aided verification. Springer;
2011.

[23] Xiong PengCheng, Fan YuShun, Zhou MengChu. A Petri net approach to analysis and composition of web services. IEEE Trans Syst Man Cybernet. Part
A: Syst Humans 2010;40(2):376–87.

[24] Lohmann Niels, Massuthe Peter, Stahl Christian, Weinberg Daniela. Analyzing interacting BPEL processes. Springer; 2006.
[25] Kindler Ekkart. The Petri Net Markup Language and ISO/IEC 15909-2: concepts, status, and future directions. In: Entwurf komplexer

Automatisierungssysteme, vol. 9; 2006. p. 35–55.
[26] Lohmann Niels, Gierds Christian, Znamirowski Martin. BPEL2oWFN <http://www.gnu.org/software/bpel2owfn/> [accessed 2015.01.07].
[27] Cardinale Yudith, Haddad Joyce El, Manouvrier Maude, Rukoz Marta. Web service composition based on Petri nets: review and contribution. In:

Resource discovery. Springer; 2013. p. 83–122.
[28] Berthomieu Bernard, Popova-Zeugmann Louchka. Time Petri nets: theory, tools and applications <http://www2.informatik.hu-berlin.de/

�popova/tutorial.html> [accessed 2015.01.07].
[29] TechNet. XrML <http://technet.microsoft.com/en-us/library/cc747717(v=ws.10).aspx> [accessed 2015.01.07].

Hanine Tout received her M.Sc. degree in Computer Science from the Lebanese American University. The topics of her research activities are Web services
security, BPEL, Aspect-Oriented Programming, and model checking.

Azzam Mourad is an Assistant Professor of Computer Science at the Lebanese American University. He holds a Ph.D. in ECE from Concordia University and
M.Sc. degree in Computer Science from Laval University. He is currently working on information security, Web services, vehicular networks, and formal
semantics. He is serving as TPC and reviewer of several prestigious conferences and journals.

Chamseddine Talhi is an Associate Professor in the Department of software engineering and information technologies at ‘‘Ecole de technologie superieure’’,
Montreal, Canada. He is leading a research group that investigates Smartphone and embedded systems security. Recently, he is involved in Cloud security
and secure sharing of embedded systems. Chamseddine holds a Ph.D. in Computer Science from Laval University, Quebec, Canada.

Hadi Otrok holds an Associate Professor position in the Department of ECE at Khalifa University. He received his Ph.D. in ECE from Concordia University. He
works on network and computer security, game theory and mechanism design. He chaired several security-related conferences. Moreover, he is a TPC
member of several prestigious conferences and reviewer of several IEEE and Elsevier journals.

http://refhub.elsevier.com/S0045-7906(15)00132-9/h0065
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0065
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0070
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0070
http://https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.antlr.org/index.html
http://docs.oasis-open.org/wsbpel/2.0/CS01/process/executable/ws-bpel_executable.xsd
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0090
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0090
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0095
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0095
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0095
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0100
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0100
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0105
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0105
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0110
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0110
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0115
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0115
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0120
http://www.gnu.org/software/bpel2owfn/
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0135
http://refhub.elsevier.com/S0045-7906(15)00132-9/h0135
http://www2.informatik.hu-berlin.de/~popova/tutorial.html
http://www2.informatik.hu-berlin.de/~popova/tutorial.html
http://technet.microsoft.com/en-us/library/cc747717(v=ws.10).aspx

	AOMD approach for context-adaptable and conflict-free Web services composition
	1 Introduction
	2 Related work
	3 Proposed approach
	3.1 E-AspectBPEL: AspectBPEL extension
	3.1.1 Main constructs
	3.1.2 New constructs
	3.1.2.1 Activation_Condition
	3.1.2.2 BPEL_Aspect_Priority

	3.2 Aspect-Oriented extension for WS-BPEL meta-model

	4 Framework design and implementation
	4.1 Modeler
	4.2 Generator
	4.3 Compiler
	4.4 Weaver

	5 Formal verification
	5.1 Verification properties
	5.2 Formal verification mechanism

	6 Case study and experiments
	6.1 E-AspectBPEL aspect specification
	6.1.1 Authentication: Security Aspect
	6.1.2 Encryption: Security Aspect
	6.1.3 Logging: Behavioral Aspect
	6.1.4 Discount: Context-Aware Aspect

	6.2 E-AspectBPEL aspect integration
	6.3 Formal verification
	6.4 Discussion and experimental results

	7 Conclusion and future work
	Acknowledgments
	References

