
Expert Systems with Applications 42 (2015) 165–178
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
SBA-XACML: Set-based approach providing efficient policy decision
process for accessing Web services
http://dx.doi.org/10.1016/j.eswa.2014.07.031
0957-4174/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: azzam.mourad@lau.edu.lb (A. Mourad), hussein.jebbaoui@lau.

edu.lb (H. Jebbaoui).
Azzam Mourad ⇑, Hussein Jebbaoui
Department of Computer Science and Mathematics, Lebanese American University (LAU), Lebanon

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 31 July 2014

Keywords:
Web services
Security
Set-based algebra
Policy evaluation
Real-time decision
Access control
XACML
Policy-based computing is taking an increasing role in providing real-time decisions and governing the
systematic interaction among distributed Web services. XACML (eXtensible Access Control Markup Lan-
guage) has been known as the de facto standard widely used by many vendors for specifying access and
context-aware policies. Accordingly, the size and complexity of XACML policies are significantly growing
to cope with the evolution of web-based applications and services. This growth raised many concerns
related to the efficiency of real-time decision process (i.e. policy evaluation) and the correctness of
complex policies. This paper is addressing these concerns through the elaboration of SBA-XACML, a novel
Set-Based Algebra (i.e. SBA) scheme that provides efficient evaluation of XACML policies. Our approach
constitutes of elaborating (1) a set-based language that covers all the XACML components and establish
an intermediate layer to which policies are automatically converted, and (2) a semantics-based policy
evaluation that provides better performance compared to the industrial standard Sun Policy Decision
Point (PDP) and its corresponding ameliorations. Experiments have been conducted on real-life and syn-
thetic XACML policies in order to demonstrate the efficiency, relevance and scalability of our proposition.
The experimental results explore that SBA-XACML evaluation of large and small sizes policies offers
better performance than the current approaches, by a factor ranging between 2.4 and 15 times faster
depending on policy size.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Web and cloud services are becoming very popular and
constituting the primary techniques for data exchange between
distributed systems and partners. Nowadays, several services are
being composed (Karakoc & Senkul, 2009; Mourad, Ayoubi,
Yahyaoui, & Otrok, 2012) or grouped together into communities
(Khosrowshahi Asl, Bentahar, Mizouni, Khosravifar, & Otrok,
2014) in order to form complex systems and provide advanced
set of features over the web. However, researchers are still facing
the risk of exploits due to the vast accessibility of these services
over the Internet (Bhalla & Kazerooni, 2007; Wang, Wang, Xu, Kit
Wan, & Vogel, 2004). Moreover, critical services are emerging such
as banking and other business transactions, which raise many
security challenges. In this regard, policy-based computing
(Ayoubi, Mourad, Otrok, & Shahin, 2013; Tout, Mourad, & Otrok,
2013; Yahyaoui, Mourad, AlMulla, Yao, & Sheng, 2012) is taking
an increasing role in governing the systematic interaction and
composition among distributed services. Particularly, access con-
trol is the most challenging aspect of Web service security to deter-
mine which partner can access which service. Currently, an
increasing trend is to declare policies in a standardized specifica-
tion language such as XACML, the OASIS standard eXtensible
Access Control Markup Language (Moses, 2011). XACML has been
known as the de facto standard widely used by many vendors for
specifying access control and context-aware policies. It has been
emerged as alternative solution to the traditional way of embed-
ding policy verification as part of the application features.

XACML is an XML-based standard for communicating and
enforcing access control policies between services and servers
(Ayoubi et al., 2013; Moses, 2011). The XACML based policy has
complex structure partitioned into three layers: The top layer con-
tains policy sets, the middle layer contains policies and the lower
layer contains rules. Each of the three layers has its own target,
which contains a set of subjects, resources and actions. Every
policy set has a combining algorithm to make the final decision
in case of a tie between its policies, and every policy has a combin-
ing algorithm to make the final decision in case of a tie between its
rules. According to the current XACML engine (Moses, 2011), each
request is submitted to the Policy Enforcement Point (PEP) that

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.07.031&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.07.031
mailto:azzam.mourad@lau.edu.lb
mailto:hussein.jebbaoui@lau.edu.lb
mailto:hussein.jebbaoui@lau.edu.lb
http://dx.doi.org/10.1016/j.eswa.2014.07.031
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

166 A. Mourad, H. Jebbaoui / Expert Systems with Applications 42 (2015) 165–178
formulates it using XACML language. Consequently, the Policy
Decision Point (PDP) checks at runtime the request with respect
to the policy in order to determine access or deny decision. The
final decision is enforced by the PEP. This whole process is referred
to by policy evaluation. Please refer to Section 7 Listings 1 and 2 for
a complete example of a Bank service XACML policy and request
evaluation.

With the increase of adopting single, composed and grouped
Web services into web-based solutions (Karakoc & Senkul, 2009;
Khosrowshahi Asl et al., 2014; Mourad et al., 2012), the size and
complexity of XACML policies are significantly growing to cope with
this evolution and cover the variety of access conditions. Some real-
life composed and grouped policies may nowadays embed hundreds
and even thousands of rules. On the other hand, this growth raises
many concerns related to the efficiency of real-time decision process
of complex policies and makes them candidate for insertion of pos-
sible flaws between policies and rules. To elaborate more, XACML
evaluation engine is responsible of verifying all the rules of all the
participating policies, in addition to resolving their corresponding
combining algorithms, in order to handle the decisions to the
requests at runtime. Hence, enforcing large size XACML policies will
decrease the efficiency of policy evaluation engine, and conse-
quently may create performance bottleneck for the services. Several
approaches (Liu, Chen, Hwang, & Xie, 2008; Marouf, Shehab,
Squicciarini, & Sundareswaran, 2011; Ngo, Makkes, Demchenko, &
de Laat, 2013; Pina Ros, Lischka, & Gómez Mármol, 2012) have been
proposed to ameliorate the performance of policy evaluation pro-
cess of the original XACML engine (Moses, 2011). However, these
propositions entail major modification on the Sun PDP architecture
(Moses, 2011) and assumptions in terms of continuous policy load-
ing and cumulative reception of all requests, which do not always
hold in real world environment and limit their efficiency and useful-
ness. More details about these limitations are presented in Section 2.
Hence, decreasing the overhead of XACML evaluation process still
constitutes a real challenge.

In this paper, we address the aforementioned accuracy and
performance problems by elaborating a novel set-based approach
for the evaluation of XACML policies. The formal specification of
policies and rules using sets is allowing us to efficiently perform
evaluation and analysis tasks. The proposed SBA-XACML scheme
is composed of a formal algebra language including an automatic
converter and compiler, and a policy evaluation module based on
formal semantics. All the approach components have been imple-
mented in one development framework that accepts XACML poli-
cies and requests as inputs, converts them automatically to SBA-
XACML constructs when needed and evaluates the requests and
policies to provide the final access decision. To download and get
additional information about the developed framework and
experiments, please visit the following link: http://www.
azzammourad.org/#projects. In this context, the main contribu-
tions of SBA-XACML are three folds:

� Set-based intermediate representation of XACML constructs
into readable mathematical syntax that maintains the same
XACML policy structure and accounts for all its elements and
their sub elements including rule conditions, obligations,
request and response. The corresponding language and com-
piler offer automatic and optional conversion from XACML to
SBA-XACML constructs.
� Formal semantics and algorithms that take advantage of the

mathematical operations to provide efficient policy evaluation.
Unlike current literature, the adopted approach maintains the
same architecture of the industrial standard XACML Sun PDP
(Moses, 2011) and respects the major properties and assump-
tions of real-life environments in terms of remote policy loading
upon need and disjoint reception of requests from distributed
parties. The experimental results conducted on real-life and
synthetic XACML policies explore that SBA-XACML evaluation
of large and small size policies provide better performance than
Sun PDP (Moses, 2011) and its corresponding ameliorations in
the literature (Liu et al., 2008; Marouf et al., 2011; Ngo et al.,
2013; Pina Ros et al., 2012), by a factor ranging between 2.4
and 15 times faster depending on policy size.

The rest of the paper is organized as follows. The related work is
summarized in Section 2. Section 3 is devoted for the approach
overview and architecture. The description of the proposed SBA-
XACML language is presented in Section 4. The formal semantics
of SBA-XACML policy evaluation is offered in Section 5. In Section 6,
the evaluation algorithms are presented. A case study of policy
evaluation and a discussion of the experimental results are
illustrated in Sections 7 and 8. Finally, the conclusion is presented
in Section 9.
2. Related work

In this section, we provide an overview of the related work in
the literature addressing XACML policy evaluation and formaliza-
tion. Few approaches have been proposed in this regards. Liu
et al. (2008) proposed the XEngine which is a scheme for efficient
XACML policy evaluation. It is an extension to the SUN Policy Deci-
sion Point (PDP) (Moses, 2011). Their approach improves the per-
formance of the PDP by numericalization and normalization of
the XACML Policies. It consists of 3 steps. The first one is the con-
version process of all the strings of XACML based policy and
requests to numerical values. The second one is the normalization
process which is the conversion of the output from the first step to
hierarchical structure and conversion of combining algorithm to
First-applicable. The third step is creating a tree structure from
the second one. Their approach provides amelioration with respect
to policy evaluation performance. However, they do not support
obligations due to the conversion of all combining algorithms to
first applicable (Ngo et al., 2013). Moreover, the major modification
on the Sun PDP architecture and main assumptions of their exper-
iments do not always hold in real world environment, which limit
the efficiency and usefulness of their proposition. First, assuming
that the policies are always loaded in the memory contradicts with
the core concept of XACML (Moses, 2011) and is problematic for
large size policies with hundreds and thousands of rules. The pol-
icies should be loaded upon request for a short period, where the
policy repository can be accessed locally or remotely for security,
privacy and memory restriction purposes. Second, our experiments
with their tools show that the main overhead reduction is achieved
when all the requests (i.e. up to 100,000 requests) are received,
converted and loaded in the memory at the same time, then all
of them evaluated against the already loaded policies. Again, such
assumption does not always hold since requests can be received
from different parties at variant time–space. In this regard, the pro-
vided experimental results explore that our approach provides bet-
ter performance than XEngine.

Marouf et al. (2011) proposed a clustering and re-ordering
techniques for optimizing XACML performance. The proposed
clustering method groups policies and rules based on target sub-
jects. The re-ordering process is based on statistical analysis of
policy and vibrant stream of requests. This process reduces the
evaluation time because applicable policies and rules are given
higher priority to be evaluated first. Although this approach
seems interesting, the assumption of access requests following
a consistent distribution and policy re-ordering does not support

http://www.azzammourad.org/#projects
http://www.azzammourad.org/#projects

Fig. 1. SBA-XACML architecture.

A. Mourad, H. Jebbaoui / Expert Systems with Applications 42 (2015) 165–178 167
obligations. Moreover, they share the same limitations as XEn-
gine (Liu et al., 2008) in terms of major modification to Sun
PDP architecture and experiments assumptions. The provided
results show that our approach offers better performance based
on their experiments in Marouf et al. (2011).

Ngo et al. (2013) proposed Multi-Data-Types Interval Decision
Diagrams for XACML Evaluation Engine. Their approach is based
on data interval partition aggregation along with new decision dia-
gram combinations. They claim that their proposed approach does
not only improve the evaluation response time, but also provides
correctness and completeness of evaluation. Their proposed
approach seems interesting, however it is only experimented on
small scale policies up to 360 rules, unlike our and other
approaches (Liu et al., 2008; Marouf et al., 2011).

Pina Ros et al. (2012) proposed an optimization for XACML
policies evaluation based on two trees. The first tree is a matching
tree which is created for a quick finding of applicable rules. The
second tree is a combining tree which is used for evaluation of
the applicable rules. They proposed a binary search algorithm for
finding the matching tree. This approach supports requests with
multi-valued attributes, however the matching tree does not
support policies with multi-valued attributes.

Rao, Lin, Li, and Lobo (2009) introduced an algebra for fine-
grained integration that supports specification of a large variety
of integration constraints. They introduced a notion of complete-
ness and prove that their algebra is complete with respect to this
notion. Then, they proposed a framework that uses the algebra of
fine-grained integration of policies expressed in XACML. Their
approach, however, does not cover rule conditions and obligations
and focuses on integration between different parties, unlike ours
which focuses on analyzing policy sets individually and after
integration.

Kolovski, Hendler, and Parsia (2007) proposed a formalization
of XACML using description logics (DL), which are a decidable frag-
ment of First-Order logic. They perform policy verification by using
the existing DL verifiers. Their analysis service can discover redun-
dancies at the rule level. This approach may also speed up the eval-
uation process by removing rules that do not affect the final
decision. However, they do not support multi-subject requests,
complex attribute functions, rule Conditions and Only-One-Appli-
cable combining algorithm.

Mazzoleni, Bertino, and Crispo (2006) proposed an authorization
technique for distributed systems with policies from different par-
ties. Their approach is based first on finding similarities between
policies from different parties based on requests. Then, it provides
an XACML extension by which a party can provide the integration
preferences. This approach focuses on policy integration from differ-
ent parties and do not address policy analysis.

Based on the study of the current literature, it is trivial that
this domain is still and will continue to be a challenging niche
for researchers. Our approach differs from the aforementioned
ones in different aspects. First, it is providing a set-based algebra
syntax and semantics that accounts for all the XACML elements,
including rules conditions and obligations. Second, it is main-
taining the same policy structure of XACML and architecture of
Sun PDP, where policies are converted into intermediate mathe-
matical and readable syntax. This allowed us to benefit from the
formal description for efficient policy evaluation and analysis pur-
poses, which are not yet addressed by the current propositions.
Third, unlike all the current approaches, our scheme is respecting
the major properties and assumptions made by Sun PDP (Moses,
2011) with respect to real-life environment, where policies are
loaded from local or remote location upon need, and the XACML
requests are received one at a time from distributed parties. Finally,
our experiments in Section 7 show that our proposition outper-
forms the current approaches.
3. Approach overview and architecture

In this section, we present the overall architecture of our
approach illustrated in Fig. 1.

Our proposition includes the SBA-XACML Language, Compiler
and Evaluation Module. All the approach components have been
implemented in one development framework that accepts XACML
policies and requests as inputs, convert them to SBA-XACML when
needed, and perform systematically and automatically all the eval-
uation processes. It may also accepts already converted or written
SBA-XACML policies and requests. Using the framework, the user
can evaluate the requests and get the corresponding responses
using the module embedding the evaluation algorithms. To down-
load and get additional information about the developed frame-
work and experiments, please visit the following link: http://
www.azzammourad.org/#projects.

3.1. SBA-XACML language & compiler

SBA-XACML is a formal language based on algebra sets and
composed of all the elements and constructs needed for the
specification of XACML based policy, request and response. Sec-
tion 4 presents the complete definition and syntax of SBA-
XACML elements and attributes. SBA-XACML compiler includes
XACML parser and converter to SBA-XACML. It takes XACML pol-
icy set and request as inputs, parses their XACML elements and
generates SBA-XACML constructs according to the language syn-
tax and structure. It can be used independently to convert
XACML to SBA-XACML, or as embedded in our framework with
the policy evaluation module to convert XACML to SBA-XACML
at run time.

3.2. Policy evaluation module

This module allows to evaluate a SBA-XACML request against a
set of SBA-XACML policies. It is composed of policy-level and
rule-level evaluation algorithms (see Section 6) that realize the

http://www.azzammourad.org/#projects
http://www.azzammourad.org/#projects

168 A. Mourad, H. Jebbaoui / Expert Systems with Applications 42 (2015) 165–178
elaborated policy evaluation semantics presented in Section 5. The
policy-level algorithm is responsible for evaluating the policies and
triggers the rule-level one in order to evaluate the rules in each
policy. It accepts as inputs a SBA-XACML request and a policy set.
4. SBA-XACML language description

A set-based algebra is an accumulation of distinct mathematical
elements that describes the fundamental characteristics and
includes the regulations of sets and other operations such as union,
intersections, complementation, equality and inclusion. It addi-
tionally provides systematic procedures for evaluating expressions
and performing calculations, involving these operations and rela-
tions. SBA-XACML is a set-based algebra language. In the following,
we present its constructs, operators and structure: (PS; P (R; Rq); Rs
(‘‘Permit’’; ‘‘Deny’’; ‘‘NotApplicable’’; ‘‘Indeterminate’’); op
(# ;�;^; i;_;\)), where.

� PS: represents a policy set (or a based policy) which is com-
posed of one or more policies.
–P: represents a policy which is composed of one or more
rules.

–R: represents a rule.

� Rq: represents a request.
� Rs: represents a response that contains the final decision.
–‘‘Permit’’, ‘‘Deny’’, ‘‘NotApplicable’’ and ‘‘Indeterminate’’ are
policy constants and represent the final decision embedded
in the response.

� op: represents an operator.

– # : represents a subset or equal.
–� : represents a subset.
–^ : represents logical operator ’’and’’.
–_ : represents logical operator ’’or’’.
–> : represents the precedence order between operations.
–\ : represents the intersection between two sets.

In the sequel, we present the SBA-XACML syntax for the based
policy, request and response respectively.

4.1. SBA-XACML based policy

XACML based policy, which they also refer to as a policy set PS,
is ordered into 3 levels: PolicySet; Policy, and Rule. Every element
can contain a Target. PolicySet element contains other PolicySetðsÞ
and/or PolicieðsÞ. Policy contains RuleðsÞ. PolicySets and Policies have
their Obligations to fulfill whenever a Response is reached to either
a Permit or Deny decision. In the following, we present the defini-
tions and syntax of all the elements.

4.1.1. Common elements definitions and syntax
The following are the common elements that are used at the

policy set, policy and rule levels.
A target TR is an objective and is mapped to SBA-XACML within

the context of rule, policy and policy set according to the following
syntax:

TR ¼ fS;R;Ag ðConstruct 1Þ

where S is a set of subjects, R is a set of resources and A is a set of
actions.

Obligations OBLs contain one or more obligation(s) OBL. An obli-
gation is an action that takes place after a decision has been
reached to either Permit or Deny. It is mapped to SBA-XACML
within the context of policy and policy set according to the follow-
ing syntax:
OBLs ¼ OBL� Set ðConstruct 2Þ
OBL ¼ fOBLID; FFOn; ffAttID;DT;Vggg ðConstruct 3Þ

where OBL� Set is the the set of obligation OBL to be performed,
OBLID is the id identifying the obligation, FFOn is the Fulfill On attri-
bute that is used as a key to determine when the obligation must be
enforced and must be either permit or deny, AttID is the attribute id
of the obligation to be carried out, DT is the data type and V is the
value. If the policy or policy set being evaluated matches the FFOn
attribute of its obligations, then the obligations are passed to be
enforced otherwise obligations are ignored.

4.1.2. PolicySet (PS) definition and syntax
A policy set PS is a container of policies. PS may contain other

policy sets, policies or both. It can also be referenced by other pol-
icy sets. It is mapped to SBA-XACML according to the following
syntax:

PS ::¼ hID; SP; PR; PCA; IPS;OBLs; TRi ðConstruct 4Þ

where ID is the policy set id, SP is the set of policies that belongs to
policy set PS; PR is the precedence order of policies that belongs to
PS; PCA is the policy combining algorithm, IPS is the policies or pol-
icy set that are referenced by PS;OBLs is the set of obligations and TR
is the target (refer to Section 4.1.1 for details).

Example 1. Consider a policy set PS1 with two policies P1 and P2.
PS1 has a PCA ¼ deny� overrides. PS1 has a target
subject ¼ Bob; resource ¼ FileA and action ¼ Read. It has no refer-
ence to other policies and no obligations. The policy set PS1 is
mapped to SBA-XACML as follows:
PS :: ¼ hPS1; fP1; P2g; fP1 > P2g;
fdeny� overridesg; fg; fg; ffBobg; fFileAg; fReadggi

4.1.3. Policy (P) definition and syntax

A policy P is a single access control policy. It is expressed
through a set of rules. A policy contains a set of rules, rule combin-
ing algorithm, target and obligations. It is mapped to SBA-XACML
according to the following syntax:

P ::¼ hID; SR; PR;RCA;OBLs; TRi ðConstruct 5Þ

where ID is the policy id, SR is the set of rules that belongs to policy
P; PR is the precedence order of rules that belongs to P;RCA is the
rule combining algorithm, OBLs is the set of obligations and TR is
the target (refer to Section 4.1.1 for details).

Example 2. Consider a policy P1 with two rules R1 and R2. P1
has a rulecombiningalgorithm ¼ permit � overrides. It has a target
subject ¼ Bob; resource ¼ FileA and action ¼ write and without any
obligations. The policy P1 is mapped to SBA-XACML as follows:
P :: ¼ hP1; fR1;R2g; fR1 > R2g; fpermit � overridesg; fg;
ffBobg; fFileAg; fwriteggi

4.1.4. Rule (R) definition and syntax

A rule R is the most elementary element of a policy. A rule
contains rule conditions, target and rule effect. It is mapped to
SBA-XACML according to the following syntax:

R ::¼ hID;RC; TR;REi ðConstruct 6Þ

where ID is the rule id, RC is the set of rule conditions, TR is the target
(refer to Section 4.1.1 section for details), and RE is the rule effect.

A. Mourad, H. Jebbaoui / Expert Systems with Applications 42 (2015) 165–178 169
A rule condition RC is a boolean function over subjects, resources,
actions or functions of attributes. It is mapped to SBA-XACML within
the context of a rule according to the following syntax:

RC ¼ fApplyf unction; fparametersgg ðConstruct 7Þ

where Applyf unction is the function used in evaluating the elements
in the apply and parameters are the input to the function being
applied, each of which is an evaluatable.

Example 3. Consider a rule R1 with ruleeffect ¼ permit. R1 has no
target defined. Its only condition is that anyone accessing File1 is
allowed at any time. The rule is mapped to SBA-XACML as follows:

R : :¼hR1;ffstring�equal;fResourceAttributeDesignator;string;File1ggg;
fg;fg;fgg;fPermitgi

4.2. A-XACML request

A request Rq is a call for access to some resources. It is mapped
to SBA-XACML according to the following syntax:

Rq ::¼ hSr;Rr;Ari ðConstruct 8Þ

where Sr is the set of subjects, Rr is the set of resources and Ar is the
set of actions.
Example 4. Consider a request calling for access with subject Bob,
resource ServerA and action read. The request is mapped to SBA-
XACML as follows:

Rq ::¼ hfBobg; fServerAg; fReadgi

4.3. A-XACML response

A response Rs is a decision to a request against a based policy. It
is mapped to SBA-XACML according to the following syntax:

Rs ::¼ hD;OBLsi ðConstruct 9Þ

where D is the decision of the response and OBLs is the set of obli-
gations to be executed within the response (refer to Section 4.1.1
section for details).
Table 1
Match function semantics.

ððSr \ SÞ– ;Þ ^ ððRr \ RÞ– ;Þ ^ ððAr \ AÞ – ;Þ
hTR;Rqi ‘

match
True

(Rule 1)

ððSr \ SÞ ¼ ;Þ _ ððRr \ RÞ ¼ ;Þ _ ððAr \ AÞ ¼ ;Þ
hTR;Rqi ‘

match
False

(Rule 2)

Table 2
Evaluation semantics of a policy rule.

ðhTR;Rqi ‘
match

TrueÞ ^ ðRC ¼ TrueÞ ^ ðRE ¼ PermitÞ

hR;Rqi�!
eval

Permit
(Rule 3)

ðhTR;Rqi ‘
match

TrueÞ ^ ðRC ¼ TrueÞ ^ ðRE ¼ DenyÞ

hR;Rqi�!
eval

Deny
(Rule 4)

ðhTR;Rqi ‘
match

FalseÞ _ ðRC ¼ FalseÞ

hR;Rqi�!
eval

NotApplicable
(Rule 5)
Example 5. The response to the request in Example 4 is mapped to
SBA-XACML as follows:

Rs ::¼ hfpermitg; fgi
5. Evaluation semantics

Formal semantics constitutes of rigorous mathematical study
of the meaning of languages and models of computation
(Pagan, 1981; Slonneger & Kurtz, 1995). The formal semantics
of a language is specified by a mathematical model that illus-
trates the possible computations described by the language.
Operational semantics describes the execution of the language
directly rather than by translation. It somehow corresponds to
interpretation, where the implementation language of the inter-
preter is a mathematical formalism. The structural operational
semantics used in this paper is an approach proposed to give
logical means in defining operational semantics (Plotkin, 2004).
It consists of defining the behavior of a process in terms of the
behavior of its parts. Computation is represented by means of
deductive systems that turn the abstract machine into a system
of logical inferences. This allows to apply formal analysis on the
behavior of processes. The proofs of process properties are
derived directly from the definitions of the language constructs
because the semantics descriptions are based on deductive logic.
With structural operational semantics, the behavior of a process
is defined in terms of a set of transition relations. Such specifica-
tions take the form of inference rules. The valid transitions of a
composite piece of syntax is defined into these rules in terms of
the transitions of its components. Definitions are given by infer-
ence rules, which consist of a conclusion that follows from a set
of premises, possibly under control of some conditions. An infer-
ence rule has a general form consisting of the premises listed
above a horizontal line, the conclusion below, and the condition,
if present, to the right (Slonneger & Kurtz, 1995).

In this section, we present the formal semantics of a SBA-
XACML policy evaluation following the above inference rule struc-
ture and deductive logic. Given a policy set PS and a request Rq, the
response Rs is derived by the evaluation �!

eval
of all premises com-

bined between each other using designated operators op as
follows:

ðpremise1Þ op ðpremise2Þ op . . . op ðpremisenÞ
hPS;Rqi�!

eval
Rs

ðconclusionÞ

The policy and rule evaluation semantics rules, which constitute
the premises in the above rule, have also similar structure and
follows the deductive logic until reaching the basic defined pre-
mise (i.e. condition). Throughout the rest of the paper, please
note the difference between semantics rule that expresses the
evaluation at a particular level, and a policy rule which is a con-
struct in SBA-XACML. All the semantics rules follow the bottom
up structure, where all the common ones are presented first,
then followed by the rule level, policy level and policy set level
ones.

5.1. Match function

In this section, we present the matching semantics rules for a
request Rq with subject set Sr, resource set Rr and action set Ar
against a target TR with subject set S, resource set R and action
set A. The semantics of matching a request and a target is deter-
mined by comparing the request subject set Sr with target subject
set S, request resource set Rr with target resource set R and request
action set Ar with target action set A.

Rules 1 and 2 in Table 1 describe the different matching cases
for a request Rq with a target TR. In Rule 1, a target TR matches
a request Rq if the requested subject set Sr intersects with the
target subject set S, the requested resource set Rr intersects with

Table 3
Evaluation semantics of a policy where (RCA = Permit-Overrides).

ðRCA¼ Permit�OverridesÞ ^
ðhTR;Rqi ‘

match
TrueÞ^ð9R2 SR;hR;Rqi�!

eval
PermitÞ

hP;Rqi�!
eval

Permit;OBLs
(Rule 6)

ðRCA¼ Permit�OverridesÞ ^
ðhTR;Rqi ‘

match
TrueÞ^

ð8R 2 SR; hR;Rqi�!
eval

DenyÞ

hP;Rqi�!
eval

Deny;OBLs
(Rule 7)

ðRCA¼ Permit�OverridesÞ ^
ððhTR;Rqi ‘

match
FalseÞ_ð8R2 SR;hR;Rqi�!

eval
NotApplicableÞÞ

hP;Rqi�!
eval

NotApplicable
(Rule 8)

Table 4
Evaluation semantics of a policyset where (PCA = Permit-Overrides).

ðPCA¼ Permit�OverridesÞ^
ðhTR;Rqi ‘

match
TrueÞ^ð9P 2 SP;hP;Rqi�!

eval
PermitÞ

hPS;Rqi�!
eval

Permit;OBLs
(Rule 9)

ðPCA¼ Permit�OverridesÞ^
ðhTR;Rqi ‘

match
TrueÞ ^ ð8P 2 SP; hP;Rqi�!

eval
DenyÞ

hPS;Rqi�!
eval

Deny;OBLs
(Rule 10)

ðPCA¼ Permit�OverridesÞ^
ððhTR;Rqi ‘

match
FalseÞ _ ð8P 2 SP; hP;Rqi�!

eval
NotApplicableÞÞ

hPS;Rqi�!
eval

NotApplicable
(Rule 11)

170 A. Mourad, H. Jebbaoui / Expert Systems with Applications 42 (2015) 165–178
the target resource set R and the requested action set Ar inter-
sects with the target action set A. In Rule 2, a target TR does
not match a request Rq if the requested subject set Sr does not
intersects with the target subject set S, the requested resource
set Rr does not intersect with the target resource set R or the
requested action set Ar does not intersect with the target action
set A.

5.2. Rule evaluation

In this section, we present the evaluation semantics for a
request Rq at the policy rule level.

Semantics Rules 3, 4 and 5 in Table 2 describe the different
evaluation cases for a policy rule R. In semantics Rule 3, a policy
rule R evaluates a request Rq to Permit if the target matches with
the request elements (see details in semantics Rule 1) and rule
conditions RC evaluate to True and rule effect RE is Permit. In
semantics Rule 4, a policy rule R evaluates a request Rq to Deny
if the target matches with the request elements and rule condi-
tions RC evaluate to True and rule effect RE is Deny. In semantics
Rule 5, a policy rule R evaluates a request Rq to NotApplicable if
either the target does not match with the request elements (see
details in semantics Rule 2) or rule conditions RC evaluate to
False.

5.3. Policy evaluation

In this section, we present the evaluation semantics for a
request Rq at the policy level. Rules 6, 7 and 8 in Table 3
describe the cases where the rule combining algorithm (RCA) is
Permit � Overrides. We also elaborated in similar way semantics
rules that cover the cases where (RCA = Deny-Overrides) and
(RCA = First-Applicable). However, we do not present them due
to space limitation. Algorithm 2 provides some details about
them.

In Rule 6, a policy P evaluates a request Rq to Permit with a list of
obligations OBLs if the target matches with the request elements
(see details in semantics Rule 1) and there exists a rule R in the
set of Rules SR that evaluates to Permit (see details in semantics
Rule 3). In Rule 7, a policy P evaluates a request Rq to Deny with
a list of obligations OBLs if the target matches with the request ele-
ments and all rules in the set of Rules SR that evaluates to Deny (see
details in semantics Rule 4). In Rule 8, a policy P evaluates a request
Rq to NotApplicable if either the target does not match with the
request elements (see details in semantics Rule 2) or all rules in
the set of Rules SR that evaluates to NotApplicable (see details in
semantics Rule 5).

5.4. PolicySet evaluation

In this section, we present the evaluation semantics for a
request Rq at the policy set level. Rules 9, 10 and 11 in Table 4
describe the cases where the policy combining algorithm (PCA) is
Permit � Overrides. We also elaborated in similar way semantics
rules that cover the cases where (PCA = Deny-Overrides),
(PCA = First-Applicable) and (PCA = Only-One-Applicable). However,
we do not provide them due to space limitation. Algorithm 3
provides some details about them.

In Rule 9, a policy set PS evaluates a request Rq to Permit
with a list of obligations OBLs if the target matches with the
request elements (see details in semantics Rule 1) and there
exists a policy P in the set of policies SP that evaluates to Permit
(see details in semantics Rules 6). In Rule 10, a policyset PS eval-
uates a request Rq to Deny with a list of obligations OBLs if the
target matches with the request elements and all policies in the
set of policies SP that evaluates to Deny (see details in semantics
Rules 7). In Rule 11, a policy set PS evaluates a request Rq to
NotApplicable if either the target does not match with the
request elements (see details in semantics Rule 2) or all policies
in the set of policies SP that evaluates to NotApplicable (see
details in semantics Rules 8).
6. Evaluation algorithms

In this section, we present the algorithms realizing the SBA-
XACML policy evaluation semantics. We divided the evaluation
module into three algorithms. Each one of them evaluates the
request at a separate layer in the based policy.
6.1. Rule evaluation algorithm

The rule evaluation algorithm in Algorithm 1 evaluates the
request at the lowest level in the policy set. It takes two inputs:
a rule R and a request Rq. The output is the rule decision, which
is Deny; Permit, or NotApplicable.

Algorithm 1. Rule_Evaluation(R;Rq)
Algorithm 1 begins by checking whether the rule is applicable to
the request (line 1). The applicability check is done by comparing

A. Mourad, H. Jebbaoui / Expert Systems with Applications 42 (2015) 165–178 171
the request set of subjects, set of resources and set of actions
against the rule target. If the applicability check returns true, then
the rule conditions are evaluated (line 3), otherwise ‘‘NotApplica-
ble’’ is returned to the Policy Evaluation in Algorithm 2 (line 10).
Rule effect is returned if all rule conditions evaluate to true (line
6), otherwise ‘‘NotApplicable’’ is returned to the Policy Evaluation
in Algorithm 2 (line 4).

6.2. Policy evaluation algorithm

The policy evaluation algorithm in Algorithm 2 evaluates the
request at the middle layer. It calls the rule evaluation algorithm
Algorithm 1 to handle the evaluation at the lower layer. It takes
two inputs: a policy P and a request Rq. The output is the policy
decision which is Deny; Permit, or NotApplicable.

Algorithm 2. Policy_Evaluation(P;Rq)

Algorithm 2 is composed of three steps: the applicability check

of the policy, the evaluation of rules and rule combining algorithm
RCA. The applicability check is done by matching the request sub-
jects, resources and actions with policy target (line 1). If line 1
returns true, we call step 2, otherwise NotApplicable is returned
to the policy set evaluation in Algorithm 3. The evaluation of all
the rules is done by the order they are listed in the policy. The
rule evaluation algorithm Algorithm 1 is called on line 3. The
response returned is passed to step 3, where RCA can have one
of the following values: Permit � Overrides (line 15),
Deny� Overrides (line 4) or First � Applicable (line26). Step 3 of
the evaluation process differs based on the value of RCA in order
to provide the decision.
6.3. PolicySet evaluation algorithm

The policyset evaluation algorithm in Algorithm 3 calls the
policy evaluation algorithm Algorithm 2 to handle the evaluation
at the middle layer. The algorithm takes two inputs: a policy set
PS and a request Rq. The output is the final response to the
request Rs.

Algorithm 3. PolicySet_Evaluation(PS;Rq)
Algorithm 3 is composed of three steps: the applicability check
of the policy set, evaluation of policies and policy combining algo-
rithm PCA. The applicability check is done by evaluating the
request subjects, resources and actions with the policy set target
(line 1). If it returns true, then step 2 is called, otherwise
Rs ¼ NotApplicable is returned as the request response. The evalua-
tion of all the policies is done by the order they are listed in the
based policy. The policy evaluation algorithm Algorithm 2 is called
on line 3. The returned response, which is saved in PEi, is passed to
step 3, where the PCA can have one of the following values:
Permit � Overrides (line 15), Deny� Overrides (line 4),

172 A. Mourad, H. Jebbaoui / Expert Systems with Applications 42 (2015) 165–178
First � Applicable (line 26) or Only� one� Applicable (line 37). Step
3 of the evaluation process differs based on the value of PCA in
order to provide the final decision.

7. Case Study: XACML vs SBA-XACML policy evaluation

In this section, we present a case study illustrating the usability
of SBA-XACML policy evaluation process through semantics rules.

7.1. XACML policy evaluation

To start with, we provide an XACML based policy and request,
and the response of the evaluation process according to XACML
Listing 1. XACML policy fo
syntax and Sun PDP engine (Moses, 2011). A based policy for a
Bank service is presented in Listings 1 and 2. The policy set con-
tains two policies P1 and P2. The policy set ID and policy com-
bining algorithm PCA are stated in line 3. P1 (lines 4–50)
contains two rules R1 and R2, has a rule combining algorithm
permit � overrides (line 4) and a policy target (lines 5–29) with
subjects equal to Jerry and Bob (lines 9 and 13), resource
BankService=withdraw (line 21) and actions Any (line 27). R1
(lines 30–41) has a Permit rule effect thats allows access to
BankService=withdraw resource if the subject is Bob. R2 (line
42) denies access to any resources for any subjects. If policy
P1 evaluates to Permit, it has an obligation (lines 44–50) to send
an email to Customer service@bank:com. P2 (lines 51–85) con-
r a bank service part I.

Listing 2. XACML policy for a bank service part II.

A. Mourad, H. Jebbaoui / Expert Systems with Applications 42 (2015) 165–178 173
tains three rules R3;R4 and R5, has a rule combining algorithm
permit � overrides (line 52) and no target. R3 (lines 54–60) has
a Permit rule effect that allows access to BankService=deposit
resource for any subjects. R4 (lines 61–72) has a Permit rule
effect that allows access to BankService=deposit resource if the
subject is Joe. R5 (lines 73–84) has a Deny rule effect that pro-
hibit access to BankService=deposit resource if the subject is Joe.

Listing 3 contains the XACML request. The request is calling for
a resource BankService=deposit with a subject Bob and action
execute. Lines 4,9 and 14 contain subject, resource and action
respectively.

Listing 4 contains the XACML response to the request in Listing
3 against the based policy in Listings 1 and 2. The response Permit
is the final decision for the resource BankService=deposit with a
subject Bob and action execute.

7.2. SBA-XACML policy evaluation

In the sequel, we provide in Listing 5 the generated SBA-XACML
based policy corresponding to the XACML one in Listings 1 and 2,
request in Listing 6 and response in Listing 7 of the evaluation pro-
cess according to the SBA-XACML policy evaluation semantics in
Section 5.

Line 1 is the policy set PS. The policy set ID is PS1. It has two pol-
icies P1 and P2. P1 is ordered before P2. The policy combining algo-
rithm is Permit � Overrides. PS1 has no reference to other policies. It

Listing 3. XACML access request.

Listing 4. XACML access response.

Listing 5. SBA-XACML policy for a bank service.

Listing 6. SBA-XACML access request.

Listing 7. SBA-XACML response.

174 A. Mourad, H. Jebbaoui / Expert Systems with Applications 42 (2015) 165–178

A. Mourad, H. Jebbaoui / Expert Systems with Applications 42 (2015) 165–178 175
has no obligations to perform and the target subjects, resources and
actions are any. Line 2 is the Withdraw policy. The policy ID is P1. It
has two rules R1 and R2. R1 is ordered before R2. The rule combining
algorithm is Permit � Overrides. P1 has one obligation to perform
and the target subjects are Bob and Jerry, resource is
BankService=withdraw and actions are any. Line 3 is the rule R1.
The rule ID is R1. R1 has a set of conditions. The conditions are: the
subject ID must be equal to Bob and the resource ID must be equal
to BankService=withdraw. The target subjects, resources and actions
are any. R1 has a permit effect. Line 4 is the rule R2. The rule ID is R2.
R2 has no conditions. R2 has no target specified. R2 has a deny effect.
Line 5 is the deposit policy. The policy ID is P2. It has three rules R3;R4
and R5. The precedence order is R3;R4 and R5. The rule combining
algorithm is permit � overrides. P2 has no obligation to perform
and the target elements are not defined. Line 6 is the rule R3. The rule
ID is R3. R3 has one condition. The condition states that the resource
ID must be equal to BankService=Deposit. The target subjects,
resources and actions are not specified. R3 has a permit effect. Line
7 is the rule R4. The rule ID is R4. R4 has a set of conditions. The con-
ditions are: the subject ID must be equal to Joe and the resource ID
must be equal to BankService=Deposit. The target subjects, resources
and actions are not specified. R4 has a permit effect. Line 8 is the rule
R5. The rule ID is R5. R5 has a set of conditions. The conditions are:
the subject ID must be equal to Joe and the resource ID must be equal
to BankService=Deposit. The target subjects, resources and actions
are not specified. R5 has a deny effect.

Listing 6 contains the generated SBA-XACML request. The request
subject is equal to Bob, resource equal BankService=Deposit and
action equal execute.

Based on the SBA-XACML policy evaluation semantics in Sec-
tion 5 and its implemented algorithms in Section 6, the elaborated
framework will evaluate the request Rq1 in Listing 6 with respect
to the based policy PS1 presented in Listing 5. Since the evaluation
of each semantics rule is based on evaluating its premises, we will
describe the evaluation steps in order, by the premises of policy
sets, policies and rules, as summarized in Table 5. To avoid repeti-
tion and for space limitation, we will present only the matching
semantics rules that affect the final decision. The non matching
ones will be ignored. The rules in Table 5 should be read from bot-
tom to top as follows:

(1) The based policy is composed of a PolicySet PS1. It has
PCA = {Permit-Overrides}, its target TR matches request Rq1
as illustrated in (2) and it has a policy P2 that evaluates to
Permit as depicted in (3). Hence, based on the semantics Rule
9 that applies in this case, all the three premises are satisfied
and the final decision is Permit.

(2) PS1 has no target defined which means TR = {} or TR = {S =
Any, R = Any, A = Any}. Rq1 = {Sr = Bob, Rr = BankService/
Deposit, Ar = execute}. By applying semantics Rule 1, Bob
Table 5
Results of semantics-based policy evaluation.

ððfBobg \ fAnygÞ– ;Þ ^ ððfBankService=Depositg \ fAnygÞ– ;Þ ^ ððfexecu
hR3:TR;Rq1i ‘

match
True ðSemanticsRuleð1ÞÞ

ðhR3:TR;Rq1i ‘
match

TrueÞ ^ ðR3:RC ¼ TrueÞ ^ ðR3:RE ¼ PermitÞ

hR3;Rq1i�!
eval

Permit ðSemanticsRuleð3ÞÞ (5)

ððfBobg \ fAnygÞ– ;Þ ^ ððfBankService=Depositg \ fAnygÞ– ;Þ ^ ððfexecu
hP2:TR;Rq1i ‘

match
True ðSemanticsRuleð1ÞÞ

ðP2:RCA ¼ Permit � OverridesÞ ^ ðhP2:TR;Rq1i ‘
match

TrueÞ ^ ðhR3;Rqi�!
eval

hP2;Rqi�!
eval

Permit ðSemanticsRuleð6ÞÞ

ððfBobg \ fAnygÞ– ;Þ ^ ððfBankService=Depositg \ fAnygÞ– ;Þ ^ ððfexecu
hPS1:TR;Rq1i ‘

match
True ðSemanticsRuleð1ÞÞ

ðPS1:PCA ¼ Permit � OverridesÞ ^ ðhPS1:TR;Rq1i ‘
match

TrueÞ ^ ðhP2;Rq1i�!
eva

hPS1;Rq1i�!
eval

Permit ðSemanticsRuleð9ÞÞ
is a subset of Any, BankService/Deposit is a subset of Any
and execute is a subset of Any, therefore PS1 matches the
request Rq1.

(3) P2 is composed of three rules. It has RCA = Permit-Overrides,
its target TR matches with the target of request Rq1 as illus-
trated in (4) and it has a rule R3 that evaluates to Permit as
depicted in (5). Hence, based on the semantics Rule 6 that
applies in this case, all the three premises are satisfied and
the evaluation of P2 with respect to Rq1 is Permit.

(4) P2 has no target TR defined which means TR = {S = Any, R
= Any, A = Any}. Rq1 = {Sr = Bob, Rr = BankService/Deposit,
Ar = execute}. By applying semantics Rule 1, Bob is a subset
of Any, BankService/Deposit is a subset of Any and execute is
a subset of Any, therefore P2 matches the request Rq1.

(5) TR of R3 matches with the target of request Rq1 as illustrated
in (6). R3 has one rule condition RC = {string-equal,{RAD,
string, BankService/deposit}}, which means the resource
requesting access must be equal to BankService/Deposit.
RC = True because the Resource R of Rq1 is equal to BankSer-
vice/Deposit. The rule effect RE of R3 is Permit (RE = Permit).
Hence, based on the semantics Rule 3 that applies in this
case, all the three premises are satisfied and the evaluation
of R3 with respect to Rq1 is Permit.

(6) R3 has no target defined which means TR = {S = Any, R = Any,
A = Any}. Rq1 = {Sr = Bob, Rr = BankService/Deposit,
Ar = execute}. By applying semantics Rule(1), Bob is a subset
of Any, BankService/Deposit is a subset of Any and execute is
a subset of Any, therefore R3 matches the request Rq1.

The response to the request in Listing 6 against the based policy
in Listing 5 is presented in Listing 7. The evaluation results of our
approach always returns the same results given by XACML Sun
PDP (Moses, 2011).
8. Experiments and performance analysis

In this section, we provide the experiments and results of the
performance analysis comparing our scheme to the current
approaches. We have implemented the SBA-XACML framework
using PHP. Our experiments were carried out on a notebook run-
ning Windows XP SP3 with 3.50 GB of memory and dual core
2.8 GHz Intel processor. The experiments were performed at
100,000 tests each and the average number was calculated and
used. They were conducted on both real world and synthetic poli-
cies to show the scalability and performance on very large ones.
Synthetic policies are created in such a way that every policy and
every rule in the policy set is evaluated to reach the final decision
(i.e. taking always the worst case). The Synthetic policy sets range
from 400 to 4000 rules which are split evenly over 100 policies. In
teg \ fAnygÞ– ;Þ
(6)

teg \ fAnygÞ– ;Þ
(4)

PermitÞ
(3)

teg \ fAnygÞ– ;Þ
(2)

l
PermitÞ

(1)

176 A. Mourad, H. Jebbaoui / Expert Systems with Applications 42 (2015) 165–178
order to be able to exhaust the entire policy set, we specified (1) a
policy combining algorithm Deny-Overrides, (2) rule combining
algorithm Deny-Overrides for each policy, (3) the deny rule as the
last rule in the policy and (4) non empty target element. Please
note that moderate specification (i.e. decision is taking early with-
out checking all the rules) of the synthetic policies will lead to bet-
ter performance. We compare our proposed framework to the
commercial XACML engine Sun PDP (Moses, 2011) and XEngine
(Liu et al., 2008).

The processing time of Sun PDP consists of XACML policy load-
ing, request loading and request evaluation to provide the decision.
There is no pre-processing time for Sun PDP. As for XEngine, the
pre-processing time consists of policy loading, numericalization
and normalization, while processing time consists of request load-
ing, numericalization and evaluation to provide the decision.
Regarding our approach, the pre-processing consists of converting
policy set from XACML to SBA-XACML, which is optional and exe-
cuted only once when deploying the policies. The processing time
includes (1) accepting a request and converting it to SBA-XACML,
(2) loading policies and (3) evaluating the request to providing
the decision. We repeated this policy evaluation process for
100,000 different requests with and without the pre-processing
procedures and provided the average evaluation time of synthetic
and real world policies.

We chose not to use the experiments methodology used by XEn-
gine because it does not reflect real world environments. Their tools
and experiments show that all the requests (i.e. up to 100,000
requests) are received, converted and loaded in the memory at the
same time, then evaluated against the already loaded policies. Again,
as aforementioned, such assumption does not always hold since
requests can be received from different parties at variant time–space.
8.1. Policy evaluation experimental results

In the following, we discuss the experimental results for single-
valued and multi-valued requests on both synthetic and real world
policies. Fig. 2 shows the results for synthetic policy evaluations for
single-valued and multi-valued requests. For single-valued
requests, Fig. 2a shows that our approach is faster than both the
XEngine and Sun PDP by 3.2 and 8 times respectively for policy sets
Fig. 2. synthetic po

Fig. 3. Experimental results on
with 400 rules, and by 2.4 and 2.7 times faster for policy sets with
4000 rules. For multi-valued requests, Fig. 2b shows that our
approach is faster than both the XEngine and Sun PDP by 3.5 and
9.4 times respectively for policy sets with 400 rules, and by 2.5
and 3.5 times faster for policy sets with 4000 rules.

Fig. 3 contains three real world policies. We included the num-
ber of rules in each policy set, the average pre-processing time
(conversion time) for SBA-XACML and XEngine, the average pro-
cessing time for single-valued and multi-valued requests for SBA-
XACML, XEngine and Sun PDP. Moreover, Fig. 4 shows graphically
the results for real world policy evaluation for single-valued and
multi-valued requests. Fig. 4a explores that our approach is 8 times
faster than XEngine and 39 times faster than the Sun PDP for small
policies with less than 10 rules, while it is 7.6 faster than XEngine
and 3 times faster than Sun PDP on policies with 300 rules. Fig. 4b
shows that our approach is faster by 2.4 times and 6.3 than XEn-
gine and Sun PDP respectively for a policy set with 298 rules, while
it is 3.5 times and 15 times faster than XEngine and Sun PDP
respectively for small policies with less than 10 rules.
8.2. Policy evaluation experimental results including pre-processing

In the following, we discuss the conversion time from XACML to
SBA-XACML with respect to the XEngine conversion time. The
conversion time is referred to as pre-processing time in (Liu
et al., 2008). The conversion procedure is optional in our approach
and required only during the policy deployment. However, the
XEngine approach requires this step because the conversion
includes numericalization and normalization and it is the core of
their proposal to improve the evaluation response time. Fig. 5a
and b show the conversion time for synthetic and real world poli-
cies respectively. Assuming the Synthetic policies are in XACML,
the XEngine pre-processing time consumes 2.3 times more than
our approach for a policy set with 4000 rules, and 8.5 times more
for a policy set with 400 rules. For real policies, the XEn-
gine requires 8 times more than our approach for policy sets
with 298 rules, and 10 times more for policy sets with less than
10 rules.

Fig. 6 shows the results of the overall processing and pre-pro-
cessing (i.e. conversion) time of single-valued and multi-valued
licy evaluation.

real-world XACML policies.

Fig. 5. Policy conversion.

Fig. 4. Real policy evaluation.

Fig. 6. Synthetic policy evaluation with conversion.

Fig. 7. Real policy evaluation with conversion.

A. Mourad, H. Jebbaoui / Expert Systems with Applications 42 (2015) 165–178 177
requests against synthetic policies ranging from 400 to 4000 rules.
Fig. 6a shows that our approach outperformed the XEngine by 6
times for small policy sets with 400 rules, and by 2 times for large
policy sets with 4000 rules. Fig. 6b illustrates that our approach
outperformed the XEngine by 6.1 times for small policy sets with
400 rules, and by 2 times for large policy sets with 4000 rules.
Fig. 7 shows the results for the overall processing and pre-pro-
cessing (i.e. conversion) for single-valued and multi-valued requests
against real policies ranging from 2 to 298 rules. Fig. 7a shows that
SBA-XACML outperformed the XEngine by 9 times for small policy
sets with less than 10 rules and by 4.2 times for medium size policy
sets with 300 rules. Fig. 7b illustrates that our approach outperformed

178 A. Mourad, H. Jebbaoui / Expert Systems with Applications 42 (2015) 165–178
the XEngine by 9 times for small policy sets with less than 10 rules,
and by 4 times for policy sets with 300 rules.

9. Conclusion and future work

This paper addressed problems related to the performance of
real-time evaluation of composite and complex XACML policies
for accessing Web services. In this context, the contribution of this
work is the elaboration of a novel set-based scheme called SBA-
XACML that provides efficient policy evaluation and decision pro-
cess. Our proposition constitutes of (1) a mathematical intermediate
representation of policies based on set theory that maintains the
same XACML structure and accounts for all its elements and their
sub elements including rule conditions, obligations, policy request
and policy response; and (2) a formal semantics that takes advan-
tage of the mathematical operations to provide efficient evaluation
of policy elements and constructs through deductive logic and infer-
ence rules. Our proposed approach improves the related literature
by reducing the complexity of the policies and overhead of real-time
policy evaluation. Moreover, it offers the first complete formal rep-
resentation of XACML constructs, which opens the door for potential
analysis on the policy meaning. Furthermore, it maintains the same
architecture of the industrial standard XACML Sun PDP (Moses,
2011) and respects the major properties and assumptions of real-life
environments in terms of remote policy loading upon need and dis-
joint reception of requests from distributed services.

The aforementioned theoretical outcome are also supported by
developing practical algorithms, modules and experiments using
real-life and synthetic policies. The proposed algebra language
including its compiler have been implemented in a module that
provides automatic and optional conversion from XACML to SBA-
XACML constructs. Moreover, the proposed semantics have been
realized into algorithms for policy evaluation and decision making.
Finally, the conducted experiments explore that SBA-XACML
evaluation of large and small sizes policies provide better
performance than Sun PDP (Moses, 2011) and its corresponding
ameliorations in the literature (Liu et al., 2008; Marouf et al.,
2011; Ngo et al., 2013; Pina Ros et al., 2012), by a factor ranging
between 2.4 and 15 times faster depending on policy size. To
download and get additional information about the developed
framework and experiments, please visit the following link:
http://www.azzammourad.org/#projects.

There are many directions for future work to be built on top of
our approach. First, we can benefit from SBA-XACML to potentially
elaborate policy analysis semantics based on the meaning of rules
for detecting access flaws, conflicts and redundancies. This prob-
lem is raised when having complex policies with hundred and even
thousands of rules, or when several XACML policies from different
Web services (Ayoubi et al., 2013; Karakoc & Senkul, 2009; Tout
et al., 2013; Yahyaoui et al., 2012) are grouped and composed
together, where contradiction between combining algorithms
may occur. In this regard, few approaches have been proposed
addressing XACML policy composition and analysis (Rao et al.,
2009; Bonatti, Vimercati, & Samarati, 2002; Fisler, Krishnamurthi,
Meyerovich, & Tschantz, 2005; Kolovski et al., 2007; Mazzoleni
et al., 2006; Tschantz & Krishnamurthi, 2006; Wijesekera &
Jajodia, 2003). However, none of them addressed the aforemen-
tioned problems. Furthermore, few works (Karakoc & Senkul,
2009; Khosrowshahi Asl et al., 2014) have been addressing issues
related to composing or grouping Web services while taking into
consideration several real-time and context-aware factors. Detect-
ing semantics-based access contradictions and conflicts between
the candidates Web services, which would influence the grouping
decision, will be an interesting expansion to the current approach.
It will be also interesting to study the impact of such detection on
the overall grouping decision. Moreover, several ameliorations can
be performed on the proposed algorithms in order to provide more
efficient evaluation process.

Acknowledgment

This work is supported by the Lebanese American Univer-
sity(LAU) and CNRS, Lebanon.

References

Ayoubi, S., Mourad, A., Otrok, H., & Shahin, A. (2013). New XACML-AspectBPEL
approach for composite web services security. International Journal of Web and
Grid Services, 9(2), 127–145.

Bhalla, N. & Kazerooni, S. (2007). Web services vulnerabilities. <http://
www.blackhat.com/presentations/bh-europe-07/Bhalla-Kazerooni/Whitepaper/
bh-eu-07-bhalla-WP.pdf>.

Bonatti, P., Vimercati, S. D. C. D., & Samarati, P. (2002). An algebra for composing
access control policies. ACM Transactions on Information and System Security
(TISS), 5(1), 1–35.

Fisler, K., Krishnamurthi, S., Meyerovich, L. & Tschantz, M. (2005). Verification and
change impact analysis of access-control policies. In Proceedings of 27th
international conference on software engineering (ICSE) (pp. 196–205).

Karakoc, E., & Senkul, P. (2009). Composing semantic web services under
constraints. Expert Systems with Applications, 36(8), 11021–11029.

Khosrowshahi Asl, E., Bentahar, J., Mizouni, R., Khosravifar, B., & Otrok, H. (2014). To
compete or cooperate? This is the question in communities of autonomous
services. Expert Systems with Applications, 41(2), 4878–4890.

Kolovski, V., Hendler & J. Parsia B. (2007). Analyzing web access control policies. In
Proceedings of the 16th international conference on world wide web (WWW’07)
(pp. 677–686).

Liu, A.X., Chen, F., Hwang, J. & Xie, T. (2008). XEngine: a fast and scalable XACML
policy evaluation engine. In Proceedings of the SIGMETRICS international
conference on measurement and modeling of computer systems (pp. 265–276).

Mazzoleni, P., Bertino, E. & Crispo, B. (2006). XACML policy integration algorithms:
not to be confused with XACML policy combination algorithms!. In Proceedings
of the 11th ACM symposium on access control models and technologies
(SACMAT2006) (pp. 219–227).

Marouf, S., Shehab, M., Squicciarini, A., & Sundareswaran, S. (2011). Adaptive
reordering and clustering based framework for efficient XACML policy
evaluation. IEEE Transactions on Services Computing, 4(4), 300–313.

Moses, T. (2011). OASIS eXtensible Access Control Markup Language(XACML), OASIS
Standard 2.0. <http://www.oasis-open.org/committees/xacml/>.

Mourad, A., Ayoubi, S., Yahyaoui, H., & Otrok, H. (2012). A novel aspect-oriented
BPEL framework for the dynamic enforcement of web services security.
International Journal of Web and Grid Services, 8(4), 361–385.

Ngo, C., Makkes, M., Demchenko, Y. & de Laat, C. (2013). Multi-data-types interval
decision diagrams for XACML evaluation engine. In Proceedings of the 11th
international conference on privacy, security and trust (PST 2013) (pp. 257–266).

Pagan, F. G. (1981). Formal specification of programming languages. Prentice-Hall,
Inc..

Plotkin, G. D. (2004). A structural approach to operational semantics. Journal of Logic
and Algebraic Programming, 17–139.

Pina Ros, S., Lischka, M. & Gómez Mármol, F. (2012). Graph-based XACML
evaluation. In Proceedings of the 17th ACM symposium on access control models
and technologies (SACMAT12) (pp. 83–92).

Rao, P., Lin, D., Bertino. E., Li, N. & Lobo, J. (2009). An algebra for fine-grained
integration of XACML policies. In Proceedings of the 14th ACM symposium on
access control models and technologies (SACMAT2009) (pp. 63–69).

Slonneger, K., & Kurtz, B. L. (1995). Formal syntax and semantics of programming
language: A laboratory based approach. Addison-Wesley Publishing Company, Inc..

Tout, H., Mourad, A., & Otrok, H. (2013). XrML-RBLicensing approach adopted to the
BPEL process of composite web services. Journal of Service Oriented Computing,
7(3), 217–230.

Tschantz, M. & Krishnamurthi, S. (2006). Towards reasonability properties for
access-control policy languages. In Proceedings of the eleventh ACM symposium
on access control models and technologies (SACMAT2006) (pp. 160–169).

Wang, M., Wang, H., Xu, D., Kit Wan, K., & Vogel, D. (2004). A web-service agent-
based decision support system for securities exception management. Expert
Systems with Applications, 27(3), 439–450.

Wijesekera, D., & Jajodia, S. (2003). A propositional policy algebra for access control.
ACM Transactions on Information and System Security (TISS), 6(2), 286–325.

Yahyaoui, H., Mourad, A., AlMulla, M., Yao, L., & Sheng, Q. Z. (2012). A synergy
between context-aware and AOP to achieve highly adaptable web services.
Journal of Service Oriented Computing, 6(4), 379–392.

http://www.azzammourad.org/#projects
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0010
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0010
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0010
http://www.blackhat.com/presentations/bh-europe-07/Bhalla-Kazerooni/Whitepaper/bh-eu-07-bhalla-WP.pdf
http://www.blackhat.com/presentations/bh-europe-07/Bhalla-Kazerooni/Whitepaper/bh-eu-07-bhalla-WP.pdf
http://www.blackhat.com/presentations/bh-europe-07/Bhalla-Kazerooni/Whitepaper/bh-eu-07-bhalla-WP.pdf
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0020
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0020
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0020
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0035
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0035
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0040
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0040
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0040
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0070
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0070
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0070
http://www.oasis-open.org/committees/xacml/
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0080
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0080
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0080
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0090
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0090
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0095
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0095
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0110
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0110
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0120
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0120
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0120
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0130
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0130
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0130
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0135
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0135
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0140
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0140
http://refhub.elsevier.com/S0957-4174(14)00437-0/h0140

	SBA-XACML: Set-based approach providing efficient policy decision process for accessing Web services
	1 Introduction
	2 Related work
	3 Approach overview and architecture
	3.1 SBA-XACML language & compiler
	3.2 Policy evaluation module

	4 SBA-XACML language description
	4.1 SBA-XACML based policy
	4.1.1 Common elements definitions and syntax
	4.1.2 PolicySet (PS) definition and syntax
	4.1.3 Policy (P) definition and syntax
	4.1.4 Rule (R) definition and syntax

	4.2 A-XACML request
	4.3 A-XACML response

	5 Evaluation semantics
	5.1 Match function
	5.2 Rule evaluation
	5.3 Policy evaluation
	5.4 PolicySet evaluation

	6 Evaluation algorithms
	6.1 Rule evaluation algorithm
	6.2 Policy evaluation algorithm
	6.3 PolicySet evaluation algorithm

	7 Case Study: XACML vs SBA-XACML policy evaluation
	7.1 XACML policy evaluation
	7.2 SBA-XACML policy evaluation

	8 Experiments and performance analysis
	8.1 Policy evaluation experimental results
	8.2 Policy evaluation experimental results including pre-processing

	9 Conclusion and future work
	Acknowledgment
	References

