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The infrastructureless and decentralized nature of Vehicular Ad Hoc Network (VANET) makes it quite vul-

nerable to different types of malicious attacks. Detecting such attacks has attracted several contributions

in the past few years. Nonetheless, the applicability of the current detection mechanisms in the deployed

vehicular networks is hindered by two main challenges imposed by the special characteristics of VANETs.

The first challenge is related to the highly mobile nature of vehicles that complicates the processes of

monitoring, buffering, and analyzing observations on these vehicles as they are continuously moving and

changing their locations. The second challenge is concerned with the limited resources of the vehicles

especially in terms of storage space that restricts the vehicles’ capacity of storing a huge amount of ob-

servations and applying complex detection mechanisms. To tackle these challenges, we propose a multi-

decision intelligent detection model called CEAP that complies with the highly mobile nature of VANET

with increased detection rate and minimal overhead. The basic idea is to launch cooperative monitor-

ing between vehicles to build a training dataset that is analyzed by the Support Vector Machine (SVM)

learning technique in online and incremental fashions to classify the smart vehicles either cooperative or

malicious. To adapt the proposed model to the high mobility, we design it on top of the VANET QoS-OLSR

protocol, which is a clustering protocol that maintains the stability of the clusters and prolongs the net-

work’s lifetime by considering the mobility metrics of vehicles during clusters formation. To reduce the

overhead of the proposed detection model and make it feasible for the resource-constrained nodes, we

reduce the size of the training dataset by (1) restricting the data collection, storage, and analysis to con-

cern only a set of specialized nodes (i.e., Multi-Point Relays) that are responsible for forwarding packets

on behalf of their clusters; and (2) migrating only few tuples (i.e., support vectors) from one detection

iteration to another. We propose as well a propagation algorithm that disseminates only the final de-

cisions (instead of the whole dataset) among clusters with the aim of reducing the overhead of either

exchanging results between each set of vehicles or repeating the detection steps for the already detected

malicious vehicles. Simulation results show that our model is able to increase the accuracy of detections,

enhance the attack detection rate, decrease the false positive rate, and improve the packet delivery ra-

tio in the presence of high mobility compared to the classical SVM-based, Dempster–Shafer-based, and

averaging-based detection techniques.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Road accidents constitute the main leading cause of death for

young people aged between 15 and 29 and the eight leading cause
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f mortality in general according to the World Health Organization

WHO)1. The organization warned that in 2030, road death will

robably become the fifth-leading reason of death if precaution-

ry measures are not taken. Vehicular Ad Hoc Network (VANET)

Wahab, Otrok, & Mourad, 2013b) is a multi-agent wireless net-

ork that is designed mainly to solve the traffic problems by al-

owing the smart vehicles to communicate with each other, as well
1 Global status report on road safety 2013: Supporting a decade of action, pub-

ished by World Health Organization.
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s with the roadside infrastructure such as traffic lights. For exam-

le, VANET enables vehicles to exchange emergency alerts in order

o avoid collisions. Nevertheless, the applications of VANET are not

estricted to the safety applications but englobe as well market-

ng, multi-media, and infotainment services (Huang, Chen, Chen, &

u, 2009). Therefore, providing a good level of Quality of Service

QoS) is essential in such networks in order to ensure timely and

ccurate message delivery. Moreover, the highly mobile topology of

ehicles imposes to take into consideration the mobility metrics in

ANET to maintain the stability of the network.

Vehicular Ad Hoc Network Quality of Service Optimized Link

tate Routing (VANET QoS-OLSR) (Wahab et al., 2013b) is a clus-

ering protocol that considers a tradeoff between the QoS require-

ents and the high mobility metrics in VANET. The protocol is

ased on electing a set of optimal cluster-heads in terms of QoS

nd dividing the network into clusters. To this end, a QoS function

omposed of several combinations of both QoS-based (bandwidth,

onnectivity) and mobility-based (velocity, residual distance) met-

ics is defined. The idea is to form stable clusters without sac-

ificing the QoS requirements. This function is used to elect the

luster-heads whose advantage is to facilitate the management of

he clusters (Cheng, Yang, & Cao, 2013). These heads are then re-

ponsible for selecting a set of specific vehicles charged of trans-

itting the network topology information through messages called

opology Control (TC) and forwarding the packets. Such nodes are

alled MultiPoint Relay (MPR) nodes. VANET QoS-OLSR uses an al-

orithm based on Ant Colony Optimization (ACO) (Dorigo, Caro, &

ambardella, 1999) to select the MPRs satisfying the optimal path

onstraints. This algorithm takes into consideration the QoS func-

ion and End-to-End delay for this purpose. However, the problem

rises when these selected intelligent MPRs behave maliciously

nd begin launching several attacks for the purpose of disrupting

he network. Therefore, we propose in this paper an intelligent de-

ection mechanism based on Support Vector Machine (SVM) learn-

ng technique to classify the vehicles in the clustered Vehicular

d Hoc Networks either cooperative or malicious, while consider-

ng VANET QoS-OLSR as a starting point. The reason behind con-

idering VANET QoS-OLSR comes from the fact that this protocol

onsiders the formation of stable and long-living clusters, which

s necessary in VANETs for any monitoring mechanism that re-

uires buffering and comparing messages. As a case study, the

acket dropping attack in which malicious MPRs drop the pack-

ts supposed to be retransmitted is considered. Such a misbe-

avior degrades the performance and lifetime of the network by

solating some cluster-heads. These cluster-heads will no longer

eceive the TC messages and hence will not be able to commu-

icate with the other heads, which leads to a disconnected net-

ork. Although the packet dropping attack is considered as a case

tudy in the subsequent sections, our model is generic and can be

dapted to detect different types of malicious behaviors (e.g., Iden-

ity spoofing, Wormhole, etc.) by modifying the attributes used to

uild the classifiers accordingly.

The existing approaches that tackle the problem of malicious

odes in the domain of networks can be divided into two parts:

etection-oriented approaches whose main goal is to identify the

alicious nodes, and reaction-oriented approaches whose main

oal is to deal with nodes after detection. This paper addresses the

hallenging problem of detecting and identifying the malicious ve-

icles in VANET, which is still an open research problem because

f the challenges that are imposed by the special characteristics

f VANET on any proposed detection mechanism. As for the reac-

ion part, we have already proposed in our previous work (Wahab,

trok, & Mourad, 2013a) a modified Tit-for-Tat strategy that could

e adopted on top of our proposed detection model to control

he relationships between vehicles after detection. The proposed

trategy regulates the cooperation between vehicles in VANET after
etection by propagating the detection results and advising the

etwork nodes to fulfill the requests incoming from the detected

ooperative vehicles and to drop those incoming from detected

isbehaving vehicles.

Numerous detection models have been proposed in the litera-

ure for detecting misbehaving nodes in VANET. Nonetheless, the

pplicability of the existing models is hindered by the challeng-

ng characteristics of VANET. Specifically, the high mobility of vehi-

les complicates the process of monitoring, buffering, and analyz-

ng observations as vehicles are continuously moving and changing

heir locations. Moreover, the limited resources of the vehicles es-

ecially in terms of storage space restricts the ability of vehicles

o store and analyze the huge amount of observations that may

e needed for accurate detections. To tackle these problems, we

ropose in this paper a cluster-based intelligent detection model

or malicious vehicles called CEAP (Collection, Exchange, Analy-

is, and Propagation). The model combines the SVM classification

echnique (Han, Kamber, Pei, & Kaufmann, 2012) and watchdogs

onitoring concept (Marti, Giuli, Lai, & Baker, 2000) in order to

ptimize the decision making process. The reasons behind choos-

ng SVM as a classification technique are that (1) it is commonly

nown to be the best machine learning technique for binary (two

lasses) classification (Heller, Svore, Keromytis, & Stolfo, 2003; Hu,

iao, & Vemuri, 2003; Konar, Chakraborty, & Wang, 2005; Massi-

iliano, Alessandro, & Roi, 1997; Sung & Mukkamala, 2003; Vap-

ik, 1995); (2) it has been successfully used for intrusion detection

Heller et al., 2003; Hu et al., 2003; Sung & Mukkamala, 2003);

3) it is effective in high dimensional datasets with a large number

f attributes (Shon & Moon, 2007); (4) unlike some other machine

earning techniques such as Neural Networks (Haykin, 1998), SVM

ields a unique solution since the optimality problem in SVM is

onvex (Auria & Moro, 2008); (5) it produces very accurate classi-

ers, is robust to noise, and minimizes the overfitting (Han et al.,

012).

In CEAP, the database is a result of a cooperative watchdogs

onitoring process in which the watchdogs gather and share evi-

ences about the behavior of the vehicles being classified. The SVM

s then used by the cluster members in a distributed manner to

istinguish well-behaving from misbehaving MPRs. For the sake of

ncreasing the accuracy, we adapt SVM to work in both incremen-

al and online fashion. This means that the training set is contin-

ously growing by adding new training tuples (evidences) at each

teration and updated by what is learned from the previous itera-

ions, which allows us to include additional training data without

e-training from scratch (Laskov, Gehl, Krüger, & Müller, 2006). In

rder to mitigate the overhead and increase the efficiency of the

odel, CEAP exploits an important property of SVM, which states

hat only the support vectors (essential training tuples) are used

o differentiate between classes. Thus, we consider that only these

upport vectors are kept from one iteration to another, which re-

uces the training set size in a considerable manner. In addition,

he data is collected at the cluster-level targeting solely the MPR

ehicles within each cluster, which are a set of specialized nodes

esponsible for packet forwarding. Thus, the database containing

bservations on the MPR vehicles exclusively is only communi-

ated among the cluster members and only the final decisions are

ommunicated among clusters.

Contributions. In summary, our contribution is a cluster-based

ightweight intelligent detection model that uses the SVM machine

earning technique in incremental and online fashion to classify the

mart vehicles in multi-agent VANETs either cooperative or mali-

ious. This model is able to:

• Increase the accuracy of detections, reduce the false alarms,

and improve the routing process by cooperatively collecting
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a representative set of evidences and analyzing them using on-

line SVM to come up with final and unified decisions.
• Adapt well to the high mobility of vehicles by using a cluster-

based architecture designed on top of the VANET QoS-OLSR

clustering protocol, which is able to improve the stability of the

clusters and prolong the lifetime of the vehicular network.
• Reduce the storage, computation, and communication overhead

by using a cluster-based model architecture, employing SVM in

an incremental manner where only the support vectors are kept

throughout iterations, and proposing a data propagation algo-

rithm to disseminate the final decisions among clusters.

The rest of the paper is organized as follows. Section 2 reviews

the related work. Section 3 formulates the problem. Section 4 ex-

plains our proposed detection model in details and presents the

relevant algorithms. Section 5 explains the scenario and parame-

ters used to perform the simulations and presents empirical re-

sults. Finally, Section 6 concludes the paper.

2. Related work

Security issues have been widely investigated in the context of

VANETs (Daza, Domingo-Ferrer, Sebe, & Viejo, 2009; Engoulou, Bel-

laïche, Pierre, & Quintero, 2014; Lin, Sun, Ho, & Shen, 2007; Liu,

Yuen, Au, & Susilo, 2014; Zhang, Wu, Solanas, & Domingo-Ferrer,

2010). One of the important challenges in this regard is the exis-

tence of misbehaving vehicles. Several approaches have been pro-

posed in the literature to tackle this issue in both mobile and ve-

hicular ad hoc networks. These approaches are usually categorized

into (1) credit-based approaches (Douceur & Moscibroda, 2007;

Lee, Pan, Park, Gerla, & Lu, 2007; Lee, Park, Gerla, & Lu, 2012; Li

& Wu, 2009; Zhong, Yang, & Chen, 2003) in which the nodes pay

to get served and get paid versus serving the other nodes, and

(2) reputation-based approaches (Buchegger & Boudec, 2002; Lian

et al., 2008; Marti et al., 2000; Michiardi & Molva, 2002) which

are based on monitoring the nodes and propagating the misbe-

having ones in order to isolate them. Since our proposed model

falls under the second category, we survey in the following the

main reputation-based approaches proposed for mobile and ve-

hicular networks. We present as well the main contributions that

used the Support Vector Machine for anomaly detection in wire-

less networks since our model uses SVM for nodes’ classification.

Finally, we discuss the limitations of the existing detection mod-

els in wireless networks and highlight the unique features of our

proposed model.

2.1. Reputation-based approaches

In Marti et al. (2000), Marti et al. integrated the watchdog

and pathrater idea to the Dynamic Source Routing (DSR) Johnson

and Maltz (1996) protocol. This approach encompasses two mod-

ules: watchdog and pathrater. The watchdog is used to monitor the

next-hop in order to ensure that intermediate nodes are retrans-

mitting the received packets. The role of pathrater is to rate each

path according to the observations received from the watchdogs

and choose the best path that avoids the misbehaviors. The main

shortcoming of this approach is that the misbehaving nodes are

rewarded instead of being punished since they will no longer for-

ward packets but their packets will remain being forwarded. More-

over, the efficiency of watchdogs may be hindered by packet colli-

sions, false alarms, and partial dropping scenario.

CONFIDANT (Buchegger & Boudec, 2002) is made up of four

components: monitor, reputation system, path manager, and trust

manager. Each node monitors its one-hop away neighbors contin-

uously and reports the suspicious events to the reputation system,

which modifies the ratings of these suspected nodes according to
he gravity and the frequency of these events. The path manager

ntervenes when the rating of a certain node becomes intolerable

y managing the route cache accordingly. Then, the trust manager

as to propagate Alarm message in order to warn the other nodes.

owever, the credibility of the generated alarms is questionable in

he sense that the nodes may mislead and report false events to

romote/demote some other nodes according to their objectives.

In CORE Michiardi and Molva (2002), the authors aim to en-

orce the cooperation of the nodes by distributing the available re-

ources in the network according to each node’s reputation, which

s built according to the contribution of this node. To this end, they

efine a weighted reputation formula composed of three types of

eputations: (1) a subjective reputation calculated based on the ex-

licit observations, (2) an indirect reputation representing the posi-

ive information reported by others, and (3) a functional reputation

inked to a specific task (i.e., packet forwarding). The main problem

f this approach is that it considers only positive indirect infor-

ation, which allows misbehaving nodes to increase each other’s

eputations by reporting bogus positive information (kaushik &

inghaii, 2011).

In Tit-for-Tat Lian et al. (2008), each node monitors its neigh-

or’s behavior and mimics this behavior to decide whether to co-

perate or defect. Nonetheless, two main limitations encounter

his strategy. First, the ambiguity in the monitoring caused by the

acket collisions and the high mobility of nodes would lead to

alse detections. In addition, this strategy leads to a deadlock phase

here no node cooperates with any other node since at a certain

ime, each node will have a bad history of all other nodes (Wahab

t al., 2013a).

Gantsou (2015) proposed a detection technique for Sybil attacks

ithout the need for pre-registration of vehicles’ identities, which

elps preserve nodes’ privacy. The proposed technique is based on

etecting which IP addresses are related and which of them are

ikely to belong to the same Network Interface Card.

Khan, Agrawal, and Silakari (2015) proposed a detection scheme

or the malicious nodes that drop and duplicate packets. The basic

dea is that vehicles are monitored by some other trusted nodes

alled verifiers that specify a selection threshold above which a

ode is considered malicious. Thereafter, verifiers report the iden-

ifiers of the malicious vehicle to a third party called Certificate

uthority (CA), which is responsible for managing the identities

f vehicles and verifying the misbehavior reports conveyed by

erifiers.

Sedjelmaci and Senouci (2015) proposed an intrusion detection

ramework for VANET called AECFV and composed of three mod-

les: Local Intrusion Detection System (LIDS), Global Intrusion De-

ection System (GIDS) and Global Decision System (GDS). The LIDs

uns at each cluster member’s level and allows them to moni-

or the behavior of their cluster-head and neighbors locating with

he same transmission range. The GIDS runs at each cluster-head’s

evel and allows it to monitor the behavior of its cluster mem-

ers and make final decisions concerning the suspected vehicles

eported by the LIDS. Finally, the GDS runs at each Roadside Unit’s

evel and enables it to aggregate the reputations of the vehicles

ased on the information that they provide and compute their ap-

ropriate trust level (Wahab, Bentahar, Otrok, & Mourad, 2015).

Kumar and Chilamkurti (2014) advocated a Learning Automata

LA) based intrusion detection system, where an automaton is em-

edded in each vehicle. The automaton takes as inputs from the

nvironment the density, mobility and direction of motion of the

ehicles to predict their behavior. Moreover, a Collaborative Trust

ndex (CTI) for each action executed by the automaton is calcu-

ated; based on which this automaton receives either penalty or

eward from its neighbors.

Wahab et al. (2013a) introduced a modified Tit-for-Tat strat-

gy called Dempster-Shafer Tit-for-Tat. This strategy works in a
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ooperative manner where a set of observations are coopera-

ively gathered by some watchdogs and then aggregated by the

luster-head using the Dempster–Shafer theory of evidence (Chen

Venkataramanan, 2005) to come up with a final decision on the

ehavior of the vehicles. Using the Tit-for-Tat concept, the cluster

embers cooperate with the vehicles classified as cooperative and

efrain from cooperating with those classified as malicious.

.2. SVM-based approaches for anomaly detection in wireless

etworks

In Li, Anupam, and Tim (2010), the authors proposed SVM-

ased Misbehavior Detection and Trust Management framework

SMART) where SVM is used to differentiate between well-

ehaving and misbehaving nodes in MANETs. The authors propose

lso a multidimensional trust management scheme (Wahab et al.,

015) to evaluate the trustworthiness of the nodes from several

erspectives. However, the limitation of SMART is that the authors

id not describe how the dataset is collected to build the SVM

lassifier, which makes their model lack realism especially in the

ighly mobile networks such as MANET or VANET, where collect-

ng accurate evidences is a challenging issue.

Kaplantzis, Shilton, Mani, and Sekercioglu (2007) introduced a

entralized detection approach based on SVM where the intrusion

etection systems that are run in the central station use one-class

VM to train the collected training dataset. The dataset is com-

osed of attributes related to the bandwidth and hop counts to de-

ect black hole and selective forwarding attacks. Nonetheless, this

odel yields a low detection rate for the selective forwarding at-

ack when the occurrence of this attack is small. Moreover, due

o the centralized architecture of this model, the base station has

o analyze a huge number of data, which leads to a high storage,

omputation, and communication overhead. Therefore, this model

s not suitable for the resource-constrained nodes such as mobiles

limited energy, bandwidth) or vehicles (limited bandwidth, stor-

ge space).

In Flouri, lozano, and Tsakalides (2008), the authors proposed

distributed model for training SVM in the wireless sensor net-

orks. The model is composed of two algorithms that try to

chieve a tradeoff between the amount of data diffused and the

nergy consumption of the nodes. The first algorithm, called Mini-

um Selective Gossip (MSG-SVM), aims at minimizing the amount

f data propagated in order to reduce the energy consumption.

he second algorithm called, Sufficient Selective Gossip (SSG-SVM),

ims at determining the sufficient amount of data to be propa-

ated in order to reach the optimality in the classification. Simula-

ion results show that the second algorithm, which requires more

ata and hence more energy consumption, gives higher classifica-

ion accuracy. The problem of this model is that the nodes have

o analyze a huge dataset coming from different nodes in the net-

ork. In contrary, our proposed model works on the cluster level

n the sense that the data is only propagated among the cluster

embers, while only the final decisions (not the data) is commu-

icated among clusters.

.3. Comparison of our model with the state-of-the-art detection

odels in VANET

The existing detection mechanisms suffer from two main draw-

acks that limit their effectiveness in the real deployed VANETs. In

act, these mechanisms overlook a paramount characteristic that

istinguishes VANET from the other types of wireless networks,

hich is the high mobility of nodes. Practically, the vehicles in

ANET are continuously and speedily moving and changing their

ocations. This complicates the processes of monitoring, buffering,

nd analyzing data related to their behavior. To tackle this issue,
e propose a cluster-based detection and design it on top of the

ANET QoS-OLSR clustering protocol, which is able to prolong the

etwork’s lifetime and maintain the clusters’ stability by grouping

he vehicles having convergent residual distance towards destina-

ion and velocity scales into homogeneous clusters. This allows ve-

icles to have enough time to monitor and analyze data relating to

heir peers in the same cluster.

The second drawback of the most of the existing detection

echanisms, especially those that are based on SVM, is the high

verhead that they entail for resource-constrained nodes such as

ehicles. In fact, the existing SVM-based detection mechanisms in

ireless networks are either centralized placing all the load on a

ingle resource-constrained node or distributed requiring the train-

ng dataset to be gathered, propagated, stored, and analyzed by/to

large number of nodes. To tackle this issue, we reduce the train-

ng set data size by (1) restricting the data collection, storage, and

nalysis to concern only a set of specialized nodes (i.e., MPRs); and

2) migrating only few essential tuples (i.e., support vectors) from

ne detection iteration to another. We propose as well a data prop-

gation algorithm that disseminates only the final decisions (in-

tead of the whole dataset) among clusters with the aim of re-

ucing the overhead of either exchanging results between each set

f vehicles or repeating the detection mechanism steps for the al-

eady detected malicious vehicles.

Furthermore, CEAP is able to improve the detection rate by us-

ng SVM in online and incremental fashions. Specifically, support

ectors are migrated from one iteration to another in the sense

hat the training set is continuously populated with additional

raining tuples, which allows us to include additional training data

ithout re-training from scratch. Moreover, SVM is used in an on-

ine fashion so that the classes of the support vectors at each itera-

ion t + 1 are updated by what is learned in the previous iteration

, which allows improving the classification accuracy.

In summary, our proposed detection model enjoys three main

dvantages over the state-of-the-art detection models in wireless

etworks, which are:

• Ability to effectively operate in a highly mobile environment.
• Minimization of the storage, communication, and computation

overhead by reducing the size of the analyzed training dataset.
• Improvement in the accuracy and attack detection rates by us-

ing SVM in online and incremental fashions.

. Problem statement

VANET QoS-OLSR (Wahab et al., 2013b) is a clustering proto-

ol that considers a tradeoff between the QoS requirements and

he high mobility metrics in VANET. The basic idea of VANET QoS-

LSR is to form stable clusters in VANET and maintain the sta-

ility during communications and link failures without sacrific-

ng the Quality of Service requirements. This is done by consider-

ng, in addition to the usual QoS parameters such as connectivity

nd bandwidth, the mobility metrics of the vehicles such as ve-

ocity and residual distance ratios when formulating the QoS func-

ion. The velocity ratio represents the vehicle’s velocity w.r.t the

verage speed limits on the road and the residual distance ratio

easures how far is the vehicle from reaching its intended desti-

ation. This QoS value is then computed using the following for-

ula: QoS(i) = BW (i) × N(i) × DistRatio(i)
VelRatio(i)

, where QoS(i) denotes the

oS value of vehicle i, BW(i) denotes vehicle i’s bandwidth share,

(i) denotes vehicle i’s number of direct neighbors, DistRatio(i) de-

otes vehicle i’s distance ratio, and VelRatio(i) denotes vehicle i’s

elocity ratio. For example, the QoS value for a vehicle v having a

andwidth share of 520 bps, 4 direct neighbors, distance ratio of

.3, and velocity ratio of 0.4 is QoS(v) = 520 × 4× 0.3
0.4 = 1560. This

oS function is used then to elect/select the cluster-heads/MPRs
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Fig. 1. VANET QoS-OLSR: vehicles 1 and 7 are elected as cluster-heads and vehicles 2 and 6 are selected as MPRs.

Table 1

QoS metrics values of vehicles.

Nodes 1 2 3 4 5

QoS value 746.5 700.56 535.2 372.6 318.7

Nodes 6 7 8 9 10

QoS value 754.8 797.8 403 236.01 159.34

Table 2

The pheromone probability values for the different paths.

Path p1 p2 p3 p4

Nodes 5–9 5–6 2–9 2–6

QoS 554.71 1073.5 936.57 1455.36

End-to-End delay (seconds) 230 198 234 120

Pheromone 324.71 875.5 702.57 1335.36

Fig. 2. Packet dropp attack example: The MPR 6 performs a packet drop attack

leading to isolate the cluster-head 7.
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and create the clusters. The VANET QoS-OLSR clustering algorithm,

which includes cluster-heads election and MPRs selection, works as

follows. First, HELLO messages (Clausen, Jacquet, Laouiti, Qayyum,

& Viennot, 2002) containing the QoS values are exchanged among

the neighboring vehicles. Next, each vehicle votes for the neighbor

having the local maximal QoS value as cluster-head. Note that the

vehicle may vote for itself if it has the highest local QoS value. Ac-

cording to Table 1 and Fig. 1, vehicles 1 and 7 should be elected

as cluster-heads since they have the maximal QoS value among

their 1-hop away neighbors. Thus, two clusters are formed: Clus-

ter 1 composed of vehicles 1, 2, 3, 4, 5, and Cluster 2 composed

of vehicles 6, 7, 8, 9, 10. In order to connect the clusters and al-

low them to communicate with each other, a set of vehicles called

Multi-points relay (MPRs) are selected by the cluster-heads.

VANET QoS-OLSR proposes a selection procedure that is based

on the Ant Colony Optimization (ACO) algorithm (Dorigo et al.,

1999). The algorithm can be summarized as follows. First, the

source cluster-head sends a set of ant messages responsible for

route discovery. These ants visit all the possible paths towards

the destination cluster-head and gather information concerning the

QoS available on each path as well as the route time of these

paths. Next, these cluster-heads calculate a pheromone value for

each path according to the gathered information (Pheromone(i) =
QoS(i) − routeTime(i)). Then, each cluster-head selects the vehicles

belonging to the path having the highest pheromone value and lo-

cating within its cluster scope as MPRs. In our example, to con-

nect the cluster-heads 1 and 7, there are four possible paths: p1:

5–9, p2: 5–6, p3: 2–9, and p4: 2–6. According to Table 2, the

path p4 composed of vehicles 2 and 6 gives the higher pheromone

value among the other possible paths. Therefore, the cluster-head
selects the vehicle 2 as MPR and the cluster-head 7 selects the

ehicle 6 as MPR. The problem in this protocol arises when the

PRs, after being selected, launch a packet dropping attack and

ecide to discard the packets instead of relaying them. The packet

rop attack is a sort of Denial of Service (DoS) (Aad, Hubaux, &

nightly, 2008) where the nodes supposed to forward the packets

iscard them instead. The nodes can also apply this attack selec-

ively either by dropping the packets heading to a particular desti-

ation, or by dropping a packet every p packets or every s seconds.

uch misbehavior will degrade the performance and lifetime of

he network by isolating some cluster-heads. These cluster-heads

ill no longer receive the Topology Control (TC) messages and will

ot be able hence to communicate with the other heads, which

eads to a disconnected network. Fig. 2 shows a packet drop at-

ack example where the MPR 6 supposed to relay packets to the

luster-head 7 discards these packets instead. This leads to isolate

he cluster-head 7 and prevents it from receiving the TC messages

nd being hence aware of the network topology. Thus, cluster 2 is

isconnected from the network. Fig. 3 shows how the the percent-

ge of dropped packets (Eq. 1) increases with the increase in the

ercentage of malicious vehicles.

ercentage of dropped packets

= 100% × number of dropped packets

Total number of packets
(1)

he figure shows that up to 55% of the total packets may be

ropped when the percentage of malicious vehicles reaches 50%,

hich will lead to a widely disconnected and short-living net-

ork. In order to simulate Fig. 3, the number of vehicles used

s 500, the packet drop percentage varies from 1% to 100%, and

he percentage of malicious vehicles varies from 10% to 50%.

he percentage of dropped packets is obtained by dividing the
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Fig. 3. The percentage of packets dropped increases with the increase in the per-

centage of malicious vehicles.
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umber of dropped packets over the total number of packets sup-

osed to be forwarded. The number of dropped packets is calcu-

ated by incrementing this counter each time the malicious vehicle

rops a number of packets according to its packet drop percentage

these simulation parameters are explained in details in Section 5).

herefore, it is highly important to develop a detection model that

s able to accurately detect and identify these malicious vehicles

ith minimal false alarms and overhead.

. CEAP detection model

In this section, we describe our model, called CEAP (Collection,

xchange, Analysis, and Propagation), proposed to detect the mali-

ious vehicles in the clustered VANETs. Recall that the packet drop-

ing attack is considered as a case study. The model is composed

f four phases: (1) data collection, (2) data exchange, (3) data anal-

sis, and (4) data propagation. The solution can be summarized

s follows. In the data collection phase, the cluster members, in-

luding the cluster-head, are designated as watchdogs to continu-

usly monitor and analyze the behavior of the MPR nodes. These

atchdogs collect evidences according to their observations. The

ata analysis phase, which consists of analyzing the training set

sing SVM and classifying the MPRs accordingly, runs each t iter-

tions and can be called for by the watchdogs to run out of the

egular iterations (i.e., in the time between iteration t and itera-

ion t + 1) each time these watchdogs suspect a malicious behav-

or. In the data propagation phase, the cluster-head propagates the

lasses determined within its cluster to the other clusters when-

ver a contact between them takes place in order to mitigate the

etection time and overhead. It is worth noting that the cluster-

eads may also be malicious themselves by propagating falsified

ata. This problem is out of the scope of this paper and will be in-

estigated as future work. The details of each phase are described

n what follows.

.1. Data collection

In this phase, the cluster-members, including the cluster-head,

re designated as watchdogs (Marti et al., 2000) to continuously

onitor and analyze the behavior of the MPR vehicles that are

erving them. These watchdogs can overhear the communications

hat take place among the vehicles located within their transmis-

ion ranges. Thus, if a vehicle V can overhear the incoming and
utgoing transmissions from/to an MPR x, then V may be assigned

he role of a watchdog to monitor the behavior of x.

To this end, each watchdog maintains a buffer containing the

ecently sent packets from the sources (willing their packets to be

orwarded through the MPRs) to the MPRs. Then, the watchdog

verhears the packets being forwarded by the MPRs and compares

ach overheard packet with the packets in the buffer to see if there

s a match. If so, then the MPR has retransmitted the packet re-

eived from the source. This helps the watchdogs to fill two main

ttributes: number of packets to be forwarded, and number of packets

ctually forwarded. Thereafter, the watchdog compares these two

arameters to have an initial idea on the classes of the MPRs. Thus,

f number of packets actually forwarded < number of packets to be

orwarded for a certain MPR, then the watchdog marks this MPR as

malicious”. Otherwise, the MPR is marked as “cooperative”. The

lgorithm of the Data Collection phase that runs at each watchdog

n the cluster is presented in Algorithm 1.

lgorithm 1 Data collection.

1: Initialization:

2: Let CH(C) be the cluster-head of cluster C.

3: Let MPRSet(C) be the set of elected MPRs in cluster C.

4: Let WatchdogSet(C) be a the set of watchdogs in cluster C.

5: Let PacketSet(m) be a the set of packets to be sent by the MPR

m.

6: Let s be a packet sent by a source node to an MPR.

7: Let countPacketsToSend(m) be the number of packets to be sent

by the MPR m.

8: Let countSentPackets(m) be the number of packets actually sent

by the MPR m.

9: Let countDroppedPackets(m) be the number of packets dropped

by the MPR m.

10: procedure DataCollection

11: for each MPR m ∈ MPRSet(C) do

12: for each packet p ∈ PacketSet(m) do

13: increment countPacketsToSend(m)

14: if p = s then

15: increment countSentPackets(m)

16: else

17: increment countDroppedPackets(m)

18: end if

19: end for

0: if countSentPackets(m) < countPacketsToSend(m) then

21: InitialClass(m) := malicious

2: else

3: InitialClass(m) := cooperative

4: end if

5: end for

6: end procedure

However, this decision is not final. In fact, the observations of

ingle watchdogs are not enough to construct an accurate decision

n such kind of networks. This is due to the fact that: (1) the high

obility of vehicles may hinder the monitoring of some watch-

ogs, (2) the packets collisions, which occur when two or more

ehicles located within the same transmission range are sending

o the same destination, may cause an ambiguity in the monitor-

ng and leads hence to false evidences, and (3) some watchdogs

re themselves malicious in the sense that they may mislead and

laim falsified evidences. Here lies the importance of the data ex-

hange, data analysis, and data propagation phases.
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4.2. Data exchange

In this phase, the watchdogs located in the same cluster share

their collected evidences. To do so, each watchdog broadcasts a

HELLO message (Wahab et al., 2013b) that contains its own IP ad-

dress to the other watchdogs to be able to exchange messages.

Thereafter, these watchdogs use the broadcasting communication

method implemented in the VANET QoS-OLSR protocol (Wahab

et al., 2013b) to share their observations. In this way, each watch-

dog will have a database containing a representative set of evi-

dences according to which it can build the final decisions. The al-

gorithm depicting this phase running at each watchdog vehicle is

given by Algorithm 2.

Algorithm 2 Data exchange.

1: Initialization:

2: Let watchdogs(C) denote the set of watchdogs in cluster C.

3: Let w be a watchdog vehicle in watchdogs(C) running this al-

gorithm.

4: Let Observations(x) be the set of observations collected by the

watchdog x.

5: procedure DataExchange

6: for each watchdog w̄ ∈ watchdogs(C) | w̄ �= w do

7: Broadcast HELLO message to w̄

8: Broadcast the observations set to w̄, i.e.,

Observations(w̄) := Observations(w̄) ∪ Observations(w)

9: end for

10: end procedure

4.3. Data analysis

In this phase, the Support Vector Machine (Han et al., 2012)

classification technique is used to analyze the collected data and

classify the MPRs. This phase is important to enhance the detection

results by taking into account that some falsified evidences may

affect the final decisions. Namely, some watchdogs may misjudge

some MPRs either intentionally or unintentionally. These watch-

dogs may intentionally classify some cooperative MPRs as mali-

cious in order to exclude them from the competition in the future

election/selection procedures or classify other malicious MPRs as

cooperative if an alliance between them occurs. Moreover, some

watchdogs may unintentionally report false evidences as a result

of the ambiguity in the monitoring caused either by packets colli-

sions or by the high mobility of vehicles. The data analysis phase,

which consists of analyzing the training set using SVM and clas-

sifying the MPRs accordingly, runs each t iteration and can be

called for by the watchdogs to run out of the regular iterations

(i.e., in the time between iteration t and iteration t + 1) each time

these watchdogs suspect a malicious behavior in the time between

iterations.

In this phase, each watchdog splits its own database into two

sets: training set and test set. The test set represents the obser-

vations of the watchdog itself, while the training set contains all

other watchdogs’ observations. The idea is that the watchdog con-

siders its observations insufficient to make a decision. Therefore,

it considers them as test set and waits for the other watchdogs’

observations (training set) to analyze them and predict the class

labels (cooperative/malicious) of its own set. Thus, the watchdog

uses Support Vector Machine (SVM) for this purpose. For the sake

of increasing the accuracy, SVM works in both incremental and on-

line fashion. It is incremental in the sense that the training set

is continuously populated with new training tuples representing

the new evidences collected by the watchdogs from one iteration
o another, while keeping the main set of training examples col-

ected previously. It is worth to note that only the support vectors

those essential tuples that are located closest to the decision hy-

erplane that separates the tuples classified as cooperative from

hose classified as malicious and whose removal would change the

osition of the hyperplane and affect thus the whole classification

rocess) are migrated throughout iterations (not the whole train-

ng set). As well, SVM is used in online manner so that the classes

f the training set in each iteration are continuously updated by

hat is learned from the previous iterations. The algorithm of this

hase running at each watchdog vehicle is shown in Algorithm 3.

lgorithm 3 Data analysis.

1: Initialization:

2: Let watchdogs(C) denote the set of watchdogs in cluster C.

3: Let w be a watchdog vehicle in watchdogs(C) running this al-

gorithm.

4: Let watchdogs(C) \ {w} denote the set of all watchdogs in

watchdogs(C) except for w.

5: Let observations be the observations collected by the watchdog

w.

6: Let train be the training set of the watchdog w.

7: Let test be the test set of the watchdog w.

8: Let SupportVectors be the support vectors used by the classifier

of watchdog w to distinguish among classes.

9: Let MPRSet(C) denote the set of MPRs elected in cluster C.

10: procedure DataAnalysis

11: for each MPR m ∈ MPRSet(C) do

12: train := SupportVectors ∪ observations(watchdogs(C) \
{w})

13: test := observations

14: Train the classifier to find the hyperplane that maxi-

mizes the margin between classes in train by solving Eq. (7)

15: Learn the classifier C on train by pairing each set of in-

puts with the expected output

16: Use the learned classifier C to predict the final classes

of test

17: end for

18: end procedure

SVM is a classification technique that employs a nonlinear map-

ing to convert the original data into higher dimension in order to

nd a hyperplane that separates the training tuples based on their

lasses. The hyperplane is determined using support vectors (major

raining records) and margins (determined based on the support

ectors) in a way that maximizes the hyperplane’s margins with

he aim of delivering more accurate results when classifying future

ata tuples (Han et al., 2012).

Formally, the SVM technique works as follows. Let’s define (xi,

i)…(xn, yn) to be the training data, n to be the number of obser-

ations, yi ∈ {−1, +1} being the class label such that −1 indicates

malicious vehicle and +1 indicates a cooperative vehicle, xi be-

ng each observation, w being a weight vector and b a threshold

uch that yi(w × xi + b) ≥ 1. Note that yi(w × xi + b) represents the

unctional margin that tells whether a particular point is properly

lassified or not, where w × xi + b is the model’s prediction for the

th training tuple and yi is the actual class label (i.e., cooperative

r malicious). The larger is the functional margin, the better is the

eparation between classes and the more accurate are the classifi-

ations. If yi = 1 (i.e., cooperative), we need w × xi + b to be a large

ositive number for a large functional margin. If yi = −1 (i.e., ma-

icious), we need w × xi + b to be a large negative number for a

arge functional margin. This is because yi(w × xi + b) >= 0 means

hat the classification is correct. To prevent data points from falling
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Fig. 4. According to SVM, the hyperplane HP2 is chosen to separate the two classes

since it gives the maximum margin between them. HP1 separates the classes but

does not maximize the margin between them, while HP3 cannot separate the

classes.

Fig. 5. The value of w affects the position of the hyperplane.
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Fig. 6. The area used to simulate the movement of vehicles in VanetMobiSim.
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nto the margin when determining the optimal hyperplane (i.e., to

aximize the functional margin), the following constraints have to

e satisfied:

• w × xi + b >= 1 for xi = 1 and
• w × xi + b <= −1 for xi = −1

These constraints can be combined into one set of inequalities

s follows:

i(w × xi + b) ≥ 1 f or all 1 ≤ i ≤ n. (2)

ach MPR can be either cooperative or malicious. Thus, we define

i ∈ {cooperative, malicious}. Given the two classes, the main idea

f SVM is to maximize the margin between these classes (Fig. 4).

iven the training datasets (xi, yi)…(xn, yn), the objective is to find

he hyperplane that have a maximum margin (Fig. 5) such that:

× x + b = 0 (3)

hus, the training observations satisfy:

× x + b ≥ −1 f or all malicious x (4)
i
× x + b ≤ +1 f or all cooperative xi (5)

he problem of finding the optimal hyperplane can be turned into

convex optimization problem Scholkopf and Smola (2001):

min

{
‖w‖2

2
+ c

∑n
i=1 εi

}
Sub ject to yi(w × xi + b) ≥ 1 − εi, εi ≥ 0, 1 ≤ i ≤ n

(6)

n
i=1 εi is used to relax the constraints on the learning vectors, and

represents a constant that is responsible for achieving the trade-

ff between maximizing the margin and minimizing the number

f misclassifications. The convex optimization problem presented

n Eq. 6 can be solved by using the Lagrange multiplier Scholkopf

nd Smola (2001):

maximize L(α) = ∑n
i=1 αi − 1

2

∑n
i=1

∑n
j=1 αiα jyiy jK(x j, xi)

sub ject to
∑n

i=1 yiαi = 0, and 0 ≤ αi ≤ C f or all 1 ≤ i ≤ n

(7)

here αi are the Lagrange multipliers and K(xj, xi) represents the

ernel function. There are four main kernel functions Han et al.

2012) used for SVM: linear, polynomial, gaussian, and sigmoid.

(x j, xi) =

⎧⎪⎨
⎪⎩

xi.x j, linear

(γ .xi.x j + c)d, polynomial

exp(−γ .| xi − x j |2
), gaussian radial basis

tanh(γ .xi.x j + c), sigmoid

(8)

y solving Eq. 7, we should get (Scholkopf & Smola, 2001):

=
n∑

i=1

αiyixi (9)

inally, the decision function is given by:

f (x, α, b) = {±1} = sgn

(
n∑

i=1

yiαiK(x j, xi) + b

)
(10)

.4. Data propagation

In order to mitigate the detection time and overhead, the

ata propagation phase is proposed. After building the final de-

isions and classifying the MPRs, the cluster-heads may exchange

he classes of the MPRs along with the routing information. Note

hat this phase is an optional phase that happens only whenever

here exists a path composed of cooperative MPRs between cluster-

eads. The idea is to allow the cluster-heads to exchange the clas-

ification results between each other in order to reduce the over-

ead of either exchanging results between each set of vehicles or
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repeating the detection mechanism steps for the already detected

malicious vehicles. Thus, our proposed detection model can still ef-

fectively work even when all the paths between clusters are com-

posed of malicious MPRs. Each cluster-head is then responsible

for broadcasting these classes to their cluster members. The idea

is to make the larger possible set of vehicles aware of the MPR

nodes that are already classified as malicious so that these vehicles

will refrain from cooperating with them or electing/selecting them

if they fall later within the range of their clusters. Thus, we are

reducing the detection time, the computation overhead, and the

communication overhead. Practically, the vehicles will know the

malicious MPRs without initiating new detection mechanisms over

and over again knowing that the detection requires time, computa-

tion overhead caused by applying the SVM algorithm, and commu-

nication overhead caused by the exchange of messages during the

data exchange phase. However, the vehicles will still monitor the

vehicles that are classified cooperative since some selectively mali-

cious vehicles may well-behave in one cluster and then misbehave

in other clusters. The algorithm of the data propagation phase is

explained in Algorithm 4.

Algorithm 4 Data propagation.

1: Initialization:

2: Let C1 and C2 be two different clusters.

3: Let x be a cluster head of cluster C1.

4: Let y be a cluster head of cluster C2.

5: Let members(x) be the members in the cluster leaded by the

cluster-head x.

6: Let members(y) be the members in the cluster leaded by the

cluster-head y.

7: Let maliciousSet(x) be the set of vehicles classified as malicious

within C1.

8: Let maliciousSet(y) be the set of vehicles classified as malicious

within C2.

9: Let cooperativeSet(x) be the set of vehicles classified as cooper-

ative within C1.

10: Let cooperativeSet(y) be the set of vehicles classified as coop-

erative within C2.

11: procedure Data Propagation

12: if a contact between x and y happens then

13: maliciousSet(y) := maliciousSet(y) ∪ maliciousSet(x)

14: maliciousSet(x) := maliciousSet(x) ∪ maliciousSet(y)

15: cooperativeSet(y) := cooperativeSet(y) ∪ cooperativeSet(x)

16: cooperativeSet(x) := cooperativeSet(x) ∪ cooperativeSet(y)

17: end if

18: for each vehicle i ∈ members(x) then

19: maliciousSet(i) := maliciousSet(i) ∪ maliciousSet(x)

20: cooperativeSet(i) := cooperativeSet(i) ∪ cooperativeSet(x)

21: end for

22: for each vehicle j ∈ members(y) then

23: maliciousSet( j) := maliciousSet( j) ∪ maliciousSet(y)

24: cooperativeSet( j) := cooperativeSet( j) ∪ cooperativeSet(y)

25: end for

26: end procedure

4.5. Complexity analysis

Despite its effectiveness and ability to produce very accurate

classifiers, the efficiency of SVM is a serious challenge. Practically,

the complexity of SVM training is O(n3) in terms of time and O(n2)

in terms of space, where n represents the training set size (Tsang,

Kwok, & Cheung, 2005). Thus, it becomes infeasible for very large

data sets. Unlike the existing SVM-based detection techniques in
ireless networks Flouri et al. (2008); Kaplantzis et al. (2007); Li

t al. (2010); Sedjelmaci and Feham (2011), we account for this fact

nd reduce the training set size n by (1) adapting SVM to a cluster-

ased architecture where vehicles have to store and analyse the

ata concerning their cluster members solely; (2) restricting the

ollection, storage, and analysis of data to concern exclusively a set

f specialized nodes (i.e., MPRs) whose number tends to be small

Wahab et al., 2013b); (3) exploiting the fact that SVM uses only

he support vectors for classification and assume that only these

upport vectors amongst the other training records should be mi-

rated from one iteration to another; and (4) proposing a propa-

ation algorithm to disseminate the final decisions among clusters

hen exchanging routing information.

As for the time complexity of our model, Algorithm 1 runs at

ach watchdog that has to monitor the packets being sent by the

PRs belonging to the same cluster. Therefore, the time complex-

ty of Algorithm 1 is O(Pa), where Pa is the number of packets sent

y these MPRs in the cluster. In Algorithm 2, each watchdog has to

roadcast its set of collected observations to the other watchdogs

f the same cluster. Thus, the time complexity of Algorithm 2 is

(1). As for Algorithm 3, each watchdog w has to run SVM in or-

er to analyze the training set consisting of the observations of the

ther cluster C’s watchdogs, i.e., watchdogs(C)�{w}. Thus, the run-

ing time of Algorithm 3 is O(M × n3), where M is the number

f MPRs, n is the number of observations of the watchdogs(C)�{w}

atchdogs, and O(n3) is the cost of applying SVM on the train-

ng set of size n. As the number of MPRs is fixed (usually small),

he running time of Algorithm 3 is O(n3). Finally, Algorithm 4 in-

olves propagating final decisions among cluster-heads whenever a

ontact occurs. Therefore, the running time of Algorithm 4 is O(1).

bviously, the main complexity lies in Algorithm 1 (i.e., O(Pa))

nd Algorithm 3 (i.e., O(n3)). Clearly, the number of observations

oncerning the exchanged packets is greater than the number of

ackets itself since the observations are being collected from sev-

ral watchdogs, i.e., n > Pa. Therefore, the overall time complex-

ty of CEAP is O(n3). Recall that n in our model is small enough

o that the polynomial complexity of CEAP is practically not a

rawback.

As for the communication overhead, a combination of TESLA

errig, Canetti, Tygar, and Song (2005) and Public Key Infras-

ructure (PKI) Gura, Patel, Wander, Eberle, and Shantz (2004)

an be used as an authentication protocol for inter-vehicle com-

unications. In fact, these two techniques have proved to be

ightweight for resource-constrained nodes such as vehicles in

ANET. In practice, verifying a signature using PKI requires

.43s Gura et al. (2004). It is worth noting as well that the

se of this combination allows us to satisfy three main secu-

ity requirements; namely, integrity, authentication, and freshness

ahab et al. (2013b).

. Simulation scenario and experimental results

In this section, we explain the scenario and parameters used

o perform our simulations. Then, we present empirical results

btained after comparing our CEAP model using different kernel

unctions as a first step and with the original SVM, averaging, and

empster–Shafer models as a second step. (Flouri et al., 2008; Ka-

lantzis et al., 2007; Kargl, Klenk, Weber, & Schlott, 2004; Li et al.,

010; Sedjelmaci & Feham, 2011; Wahab et al., 2013a, 2014).

.1. Simulation scenario and parameters

To perform the simulations, VanetMobiSim (Fiore, Harri, Filali, &

onnet, 2007) has been used as a road traffic simulator and MAT-

AB Gilat (2008) as a means to implement the network-related
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Fig. 7. VANET QoS-OLSR clustering example.
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Table 3

Simulation parameters.

Parameter Value

Number of iterations 10,000 (95% of confidence level)

Simulation area 5000 × 5000 m

Number of vehicles 100, 200, 300, 400, and 500

Percentage of malicious vehicles 10%, 20%, 30%, 40%, and 50%

Transmission range 250 m

Topology Multi-lane multi-directional highway

Packet Size 1 kb

Percentage of untrustworthy 20%

watchdogs

Minimum speed 60 km/h

Maximum speed 120 km/h

Packet drop percentage from 1% to 100%

Cross-validation K-fold with k = number of watchdogs

Kernel functions linear, polynomial, multilayer, quadratic,

and gaussian
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lgorithms. We have successfully used this combination of simu-

ators in several works before (e.g., Wahab et al. (2013a, 2013b,

014)). VanetMobiSim is an XML-based traffic simulator that en-

bles the user to determine the vehicular network features such

s topography, velocity, number of nodes, time steps, and duration.

t advances a platform to execute all the steps of single mobility

imulation. The choice of VanetMobisim stems from its ability to

rovide excellent trace support for vehicular mobility simulations

ompared to other vehicular mobility generators and generate re-

listic mobility patterns (Härri, Filali, Bonnet, & Fiore, 2006; Naren-

ra & Savita, 2014; Shea, Hassanabadi, & Valaee, 2009). A simula-

ion area of 5000 × 5000 m is used to simulate a set of vehicles

arying from 100 to 500. The screenshot of this area is presented

n Fig. 7. A multi-directional multi-lane highway topology is used

o simulate the traffic. The minimum allowed speed on this high-

ay was set to 60 km/h, while the maximum speed was 120 km/h.

he vehicles attain their maximum speed during the main highway

ass, and then slow considerably when they reach the turns, which

roduces a realistic model with both low and high density traffic.

ach simulation round lasted 420 s (i.e., 7 min) during which ve-

icles are in a continuous movement so that new vehicles may en-

er and existing vehicles may leave the area. However, the fact that

e simulate a large number of vehicles (up to 500 vehicles) makes

he area always populated with some vehicles during the simula-

ion time. After the simulation has been completed, VanetMobisim

enerates a file containing some important features such as time,

elocity, and position. These parameters are used to populate the

lgorithms developed using MATLAB. The transmission range used

o simulate the network is 300 m (Kaur, Kaur, & Singh, 2012). The

ercentage of malicious vehicles varies from 10% to 50%. The code

onsiders as well the cases of packet collisions and untrustworthy

atchdogs. We assume in our simulations that 20% of the watch-

ogs are untrustworthy and provide falsified evidences. The packet

rop percentage varies from 1% to 100% so that a malicious vehicle

an either drop all the packets or a portion of them.

After running the code in MATLAB, we obtain a database with

ix features: time, watchdog − id, MPR − id, num − packets − to −
f orward, num − packets − actually − f orwarded, and class − MPR.

or example, the following entry: 10, 1, 3, 20, 15, “malicious”

an be read as follows. At second 10 of simulations, the watch-

og referenced by 1 monitored the MPR vehicle referenced by 3,

hich is supposed to forward 20 packets. The watchdog found

hat the MPR 1 has forwarded only 15 packets out of 20;

herefore this watchdog decided to classify the MPR 1 as malicious
nitially awaiting for other evidences coming from the other watch-

ogs. Thereafter, we apply the SVM algorithm on this database

sing MATLAB as well. To this end, we split the database into

raining set (Table 4) and test set using K-fold cross-validation with

= number of watchdogs. Thus, if the number of watchdogs is 50,

here will be 50 iterations with different test set each (i.e, each

atchdog’s observations will be a test set once). Thereafter, we

rain the SVM on the training set, predict the class labels of the

est set, and then compare the predicted classes with the actual

lasses to evaluate the performance of our model by means of con-

usion matrix (Han et al., 2012). It is worth mentioning as well

hat the Ant-Colony-Optimization-based routing algorithm devel-

ped in VANET QoS-OLSR (Wahab et al., 2013b) is used to simulate

he routing process.

Note that, we apply the SVM on the training set using five dif-

erent kernel functions (linear, polynomial, multilayer, quadratic,

nd gaussian) in order to choose the function that best fits our

odel. We compare also the winner kernel function with the

veraging-based, Dempster–Shafer-based, and original SVM-based

etection models to show how CEAP is able to enhance the detec-

ions. The parameters (Chen & Chen, 2008) used to evaluate the

erformance of the different models are the accuracy rate, attack

etection rate, false positive rate, and packet delivery ratio.

ccuracy Rate

= 100% × Total number of correctly classi f ied processes

Total number of processes
(11)

ttack Detection Rate

= 100% × Total number of attacks

Total number of detected attacks
(12)

alse Positive Rate

= 100% × Total number of misclassi f ied processes

Total number of normal processes
(13)

acket Delivery Ratio = Total number of recieved packets

Total number of sent packets
(14)

or the sake of increasing the accuracy of our simulations, we con-

idered a confidence level of 95%. Then, we run independent sim-

lations for each factor being evaluated (i.e., accuracy, attack de-

ection rate, false positive, and packet delivery ratio) and calculate

he confidence interval using mean and standard deviation met-

ics to learn the number of simulation runs that are able to yield

esults respecting this interval. Experiment results show that run-

ing 10,000 independent iterations is able to provide results that

all within the expected confidence interval. The simulation param-

ters are summarized in Table 3.
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Table 4

Example of training set.

Time Watchdog MPR Num-packets- Num-packets- class-MPR

to-forward actually-

forwarded

10 1 4 20 20 “cooperative”

10 1 5 20 13 “malicious”

10 2 5 20 12 “malicious”

13 3 5 15 0 “malicious”

14 3 10 35 35 “cooperative”

14 1 4 25 24 “malicious”

… … … … … …
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5.2. Simulation results

In order to evaluate the performance of our proposed detection

model, we first compare it using different kernel functions in or-

der to select the one that best fits our model. Thereafter, we com-

pare the winner kernel function with the averaging-based Kargl

et al. (2004), Dempster–Shafer-based Chen and Venkataramanan

(2005); Konorski and Orlikowski (2009); Li and Joshi (2009);

Wahab et al. (2013a, 2014), and original SVM-based Flouri et al.

(2008); Kaplantzis et al. (2007); Li et al. (2010); Sedjelmaci and

Feham (2011) models, which are widely used in the literature for

intrusion detection in wireless networks. In the averaging model,

nodes offer a number between 0 and 1 to vote on a node’s mis-

behavior and the decision is the average of these votes. In the

Dempster–Shafer models, each evidence is assigned a weight equal

to the trustworthiness level of the node giving the evidence and

the decision is made after aggregating these evidences to come

up with a degree of belief Schubert (2011). SVM is a classification

technique that employs a nonlinear mapping to convert the origi-

nal data into higher dimension in order to find a hyperplane that

best separates the training tuples based on their classes (Han et al.,

2012). Our model uses SVM in incremental manner such that the

training set is continuously accumulated with new evidences. In

addition, SVM is performed in online fashion so that the classes

of the training set in each iteration are continuously updated by

what is learned from the previous iterations. The simulations are

done according to two scenarios: (1) different number of vehicles,

(2) and different percentage of malicious vehicles. This helps study

the scalability of our model against the increase in both the net-

work density and percentage of malicious vehicles. In the first sce-

nario, the percentage of malicious vehicles was set to 30%, while

this percentage varies in the second scenario (10%, 15%, 20%, 25%,
Table 5

Kernel functions comparison according to the network densit

Kernel function Performance metri

Accuracy rate (%)

Linear kernel 99.1375

Multilayer percepton kernel 99.0452

Quadratic kernel 99.1375

Polynomial kernel 99.5375

Gaussian radial basis function kernel 99.6753

Table 6

Kernel functions comparison according to the attackers perce

Kernel function Performance metri

Accuracy rate (%)

Linear kernel 98.0500

Multilayer percepton kernel 97.9900

Quadratic kernel 98.0500

Polynomial kernel 98.3470

Gaussian radial basis function kernel 98.7220
0%, 35%,40%, 45%, and 50%). The number of vehicles in the second

cenario was set to 500, while this number is variable in the first

cenario (100, 150, 200, 250, 300, 350, 400, 450, 500).

We observe from Tables 5 and 6 that the Gaussian Radial Basis

unction kernel outperforms narrowly the other kernel functions

n terms of accuracy, attack detection, and false positive rates in

oth scenarios. The Gaussian Radial Basis Function kernel, which

s most widely used for SVMs classification except for text recog-

ition applications, adds a bump around each data point and sup-

oses that each kernel entry is a dissimilarity measure computed

s a square of Euclidean distance between two data points in a

egative exponential manner (Han, Embrechts, & Szymanski, 2011;

chlkopf et al., 1997). Note that the values in Table 5 are obtained

fter running the simulations for each kernel function using differ-

nt number of vehicles (100, 200, 300, 400, and 500) according to

ach performance metric (accuracy rate, attack detection rate, and

alse positive rate) and computing the average accordingly. Simi-

arly, the values in Table 6 are obtained after running the simula-

ions for each kernel function using different percentages of ma-

icious vehicles (10%, 20%, 30%, 40%, and 50%) according to each

erformance metric (accuracy rate, attack detection rate, and false

ositive rate) and computing the average accordingly. The number

f iterations in both scenarios is 10000.

In Figs. 8, 9, and 10, we compare the winner kernel function

f SVM in CEAP, Gaussian Radial Basis Function kernel, with the

veraging-based, Dempster–Shafer-based, and original SVM-based

odels. From Figs. 8a, 9a, and 10a, we remark that the SVM-based

odels (CEAP and original SVM) yield a better accuracy, attack de-

ection, and false positive rates in the denser networks. This is the

ase because the bigger the number of involved vehicles is, the

ore evidences can be collected. This leads to have a more accu-

ate view of misbehaviors.

However, this is not always the case for the averaging and

empster–Shafer models. Practically, the performance of the aver-

ging model is affected by the number of outliers (misleading evi-

ences) and not by the network density. Similarly, the performance

f Dempster–Shafer is affected by the frequency of cumulative be-

iefs (the frequency of observations coming from a single watch-

og), which makes both averaging and Dempster–Shafer instable

n both scenarios (network density and percentage of malicious

ehicles). For the percentage of malicious vehicles scenario, the

erformance of the SVM-based models is slightly decreased with

he increase in the percentage of malicious vehicles as shown in

igs. 8b, 9b, and 10b.
y scenario.

c

Attack detection rate (%) False positive rate (%)

98.9175 1.0825

98.5975 1.4025

98.9175 1.0825

99.1275 0.8725

99.1575 0.8425

ntage scenario.

c

Attack detection rate (%) False positive rate (%)

98.0960 1.9040

98 2

98.0960 1.9040

98.1900 1.8100

98.9800 1.0200
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0

Fig. 8. Accuracy rate comparison: CEAP, original SVM, Dempster–Shafer, and averaging models.

Fig. 9. Attack detection rate comparison: CEAP, original SVM, Dempster–Shafer, and averaging models.

Fig. 10. False positive rate comparison: CEAP, original SVM, Dempster–Shafer, and averaging models.
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Fig. 11. Packet delivery ratio comparison: CEAP, original SVM, Dempster–Shafer, and averaging models.
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Nevertheless, SVM-based models are still far more resilient to

a significantly larger percentage of malicious vehicles in the dif-

ferent parameters (accuracy, attack detection, and false positive

rates). Moreover, Figs. 8, 9, and 10 show that the SVM-based mod-

els outperform the averaging and Dempster–Shafer models in the

different performance metrics (accuracy, attack detection, and false

positive rates). This is due to the fact that the compromised watch-

dogs, in the averaging model, could cause an error in the fi-

nal judgment by offering deliberately incorrect evidences (Chen &

Venkataramanan, 2005), which justifies the instability in the aver-

aging model plots. Additionally, the performance of the Dempster–

Shafer is affected by the cumulative beliefs as proven by Josang

and Pope (2012), which makes it inefficient to deal with such

problem where multiple evidences are generated from each sin-

gle watchdog. On the other hand, compromised evidences do not

have a significant influence to the performance of SVM since it

is resilient to the overfitting (Han et al., 2012; Pham & Trianta-

phyllou, 2008). In fact, SVM finds the hyperplane that maximizes

the margin between the two classes and is able hence to accu-

rately differentiate between these classes. Once a hyperplane is

found, most of the data other than the support vectors (the clos-

est points to the boundary) become redundant. Thus, making small

changes to the data cannot significantly influence the hyperplane

and hence the SVM. Therefore, Support Vector Machines are able

to generalize very well. In addition, Figs. 8, 9, and 10 reveal that

CEAP outperforms the original SVM-based models in terms of ac-

curacy, attack detection, and false positive rates respectively. This

is due to the fact that the training set in CEAP is accumulated in

an incremental manner, which enriches the learning space of the

SVM classifier and enhances its capability to differentiate among

classes without re-training from scratch. Moreover, the classes of

the training set in CEAP are updated in online fashion by what is

learned from previous iterations, which enhances the precision of

the classifications as the training set based on which the classi-

fier is learned is continuously becoming more and more accurate.

As a result, CEAP is able to enhance the packet delivery ratio as

shown in Fig. 11. This is due the fact that CEAP minimizes the ef-

fect of malicious vehicles on the network by accurately detecting

and identifying them, which leads to improve the routing process

consequently.

6. Conclusion and discussions

This work addresses the problem of detecting malicious vehi-

cles in clustered VANETs. To this end, a cluster-based cooperative
etection model, called CEAP, is advocated. In CEAP, the cluster

embers are designated as watchdogs to monitor and collect evi-

ences on the behavior of the Multi-point relay (MPR) nodes that

re responsible for forwarding the packets on behalf of the clus-

er. Thereafter, the SVM learning technique is employed to classify

PRs either cooperative or malicious. CEAP enjoys three main ad-

antages over the existing detection mechanisms in VANETs: (1) it

s able to increase the detection rate and minimize the false alarms

y using SVM in incremental and online fashions; (2) it is able to

dapt and effectively operate under the highly mobile nature of

ehicles; and (3) it minimizes the overhead by reducing the size

f the analyzed training dataset. Different kernel functions of SVM

re simulated to select the function that best fits our model. Simu-

ation results show that the Gaussian Radial Basis Function kernel

lightly outperforms the other functions in terms of accuracy, at-

ack detection, and false positive rates.

Promisingly, this work gives guidance to an intelligent detection

odel that can improve the detection rate and minimize the false

larms under highly mobile settings and with minimal overhead.

he main novelty of CEAP w.r.t the state-of-the-art intelligent de-

ection models (Abadeh, Mohamadi, & Habibi, 2011; Depren, Topal-

ar, Anarim, & Ciliz, 2005; Wang, Yan, Wang, & Liu, 2011; Yi, Wu,

Xu, 2011) is its consideration for the real challenges of the en-

ironment within which it should operate. Specifically, our model

s able to operate and achieve high detection rates in highly dy-

amic environments such as VANET. Moreover, CEAP differs from

he state-of-the-art SVM-based detection models by reducing the

raining set size and that constitutes a real obstacle against the

doption of SVM in many domain applications despite its well-

nown effectiveness in terms of high detection rates. In order to

erify its applicability in real environments, CEAP is tested us-

ng s realistic and highly mobile simulation environment imple-

ented using the well-known VANET simulator VanetMobisim and

nder two different challenging scenarios: (1) variation in the net-

ork nodes density, and (2) increase in the percentage of mali-

ious nodes. Simulation results prove that CEAP is quite resilient

o both cases in the sense that it can perform well in low and

igh nodes’ density and is not significantly influenced by the in-

rease in the number of malicious attackers. Moreover, the simula-

ion results reveal that CEAP outperforms the classical SVM-based,

empster–Shafer-based, and averaging-based detection techniques

n terms of accuracy, attack detection rate, false positive rate, and

acket delivery ratio in both studied scenarios.

However, the main limitation of the proposed model is its re-

iance on a semi-honest adversary model whereby the cluster-head
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s assumed to be a trusted third party. Therefore, it is worth inves-

igating in the future a more complicated detection model wherein

ll the involved parties, including the cluster-heads, MPRs and nor-

al nodes, are assumed to behave maliciously. Such a scenario re-

uires a fully distributed model that does not depend on the be-

avior of any involved entity. Moreover, CEAP may be extended

o study more complicated detection scenarios. For example, some

alicious MPRs might send the packets to some vehicles other

han the intended destinations instead of dropping them. This re-

uires an advanced and sophisticated monitoring mechanism. In

ddition, the model could be extended to consider an intelligent

ulti-class (not binary) classification model that sub-classifies the

alicious nodes based on the gravity and/or type of their attacks.

his model should be able to tell whether a particular node is sink-

ole attacker, DoS attacker, packet dropper, etc. Another future di-

ection is the actions that should be taken after the detection. For

xample, such a model should consider rewarding the cooperative

odes and punishing the malicious ones in such a thoughtful man-

er that motivates the well-behavior and demotivates the misbe-

avior. This should be done while accounting for the decentralized

nd infrastructureless nature of VANET that plays against the exis-

ence of a trusted third party to take such responsibilities.
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