
Expert Systems With Applications 80 (2017) 1–13

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Smart mobile computation offloading: Centralized selective and

multi-objective approach

Hanine Tout a , ∗, Chamseddine Talhi a , Nadjia Kara

a , Azzam Mourad

b

a Department of Software Engineering and Information Technologies, École de Technologie Superieure, Montreal, Canada
b Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

a r t i c l e i n f o

Article history:

Received 10 November 2016

Revised 2 January 2017

Accepted 3 March 2017

Available online 9 March 2017

Keywords:

Mobile device

Mobile cloud computing

Computation offloading

Selective offloading

Hotspots

Optimization

a b s t r a c t

Although mobile devices have been considerably upgraded to more powerful terminals, yet their light-

ness feature still impose intrinsic limitations in their computation capability, storage capacity and battery

lifetime. With the ability to release and augment the limited resources of mobile devices, mobile cloud

computing has drawn significant research attention allowing computations to be offloaded and executed

on remote resourceful infrastructure. Nevertheless, circumstances like mobility, latency, applications ex-

ecution overload and mobile device state; any can affect the offloading decision, which might dictate

local execution for some tasks and remote execution for others. We present in this article a novel system

model for computations offloading which goes beyond existing works with smart centralized, selective,

and optimized approach. The proposition consists of (1)hotspots selection mechanism to minimize the

overhead of the offloading evaluation process yet without jeopardizing the discovery of the optimal pro-

cessing environment of tasks, (2)a multi-objective optimization model that considers adaptable metrics

crucial for minimizing device resource usage and augmenting its performance, and (3)a tailored central-

ized decision maker that uses genetics to intelligently find the optimal distribution of tasks. The scalabil-

ity, overhead and performance of the proposed hotspots selection mechanism and hence its effect on the

decision maker and tasks dissemination are evaluated. The results show its ability to notably reduce the

evaluation cost while the decision maker was able in turn to maintain optimal dissemination of tasks. The

model is also evaluated and the experiments prove its competency over existing models with execution

speedup and significant reduction in the CPU usage, memory consumption and energy loss.

© 2017 Elsevier Ltd. All rights reserved.

1

v

i

s

p

t

i

p

e

N

2

&

c

n

2

i

o

p

a

d

u

r

c

p

e

T

e

t

h

0

. Introduction

While smartphone usage continues in a fast-paced mode, de-

elopers are provisioning more advanced applications toward all-

n-one computing device. However, no matter how sophisticated

martphones are growing, their hardware is still limited in terms of

rocessing power, memory capacity and battery lifetime, compared

o their counterparts of desktop machines. With the advancements

n wireless communications and the abundance of cloud com-

uting resources, many computations offloading techniques (Chae

t al., 2014; Chen, Ogata, & Horikawa, 2012; Chun, Ihm, Maniatis,

aik, & Patti, 2011; Cuervo et al., 2010; Flores, Srirama, & Buyya,

014; Gordon, Jamshidi, Mahlke, Mao, & Chen, 2012; Hung, Shieh,

 Lee, 2012; Kemp, 2014; Kosta, Aucinas, Hui, Mortier, & Zhang,
∗ Corresponding author.

E-mail addresses: hanine.tout.1@ens.etsmtl.ca (H. Tout),

hamseddine.talhi@etsmtl.ca (C. Talhi),

adjia.kara@etsmtl.ca (N. Kara), azzam.mourad@lau.edu.lb (A. Mourad).

t

v

F

r

ttp://dx.doi.org/10.1016/j.eswa.2017.03.011

957-4174/© 2017 Elsevier Ltd. All rights reserved.
012; Shi et al., 2014; Xia et al., 2014) have been proposed allow-

ng mobile devices to migrate the execution and throw the burdens

f computations to remote infrastructure. Typically, either full ap-

lication or fine-grained tasks like services, methods, or threads,

re migrated to be executed on remote server, releasing the mobile

evice from intensive processing. The offloading decision is based

pon number of factors. The network bandwidth and latency, the

esource demands of tasks and the mobile device state all form a

ontext that influences offloading efficiency. According to these as-

ects, a decision engine analyzes the cost of both local and remote

xecution and dictates what tasks to be offloaded correspondingly.

hough the success of offloading to enhance performance, decrease

nergy loss and augment resource availabilities, offloading evalua-

ion has its own consequences on the mobile terminal.

Multitasking is a trending action on the mobile operating sys-

ems, where multiple applications run simultaneously on the de-

ice to meet with the mobile user demands in daily life (Xiang, Ye,

eng, Li, & Li, 2014). However, when more than one application are

unning on the mobile terminal, offloading cannot be evaluated in-

http://dx.doi.org/10.1016/j.eswa.2017.03.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2017.03.011&domain=pdf
mailto:hanine.tout.1@ens.etsmtl.ca
mailto:chamseddine.talhi@etsmtl.ca
mailto:nadjia.kara@etsmtl.ca
mailto:azzam.mourad@lau.edu.lb
http://dx.doi.org/10.1016/j.eswa.2017.03.011

2 H. Tout et al. / Expert Systems With Applications 80 (2017) 1–13

c

i

t

i

i

n

d

2

b

r

i

b

l

s

t

P

a

p

d

l

d

fl

j

t

e

t

a

t

w

t

o

n

d

v

u

i

t

t

m

e

c

t

t

e

t

p

p

i

b

b

a

d

p

o

s

o

a

n

t

l

fi

b
dependently for each, as migrating one application or running it

locally would affect the execution of the others. Existing offloading

techniques necessitate invoking the decision engine for each ap-

plication separately, which make them unable to efficiently handle

such circumstances. In addition, analyzing local and remote execu-

tion costs is an iterative process, therefore running such decentral-

ized evaluation imposes in turn significant overhead and forms it-

self a bottleneck on the end terminal. Although taking the decision

remotely might overcome such problem, yet it requires sending

relevant data to remote server which imposes more overhead, be-

sides the additional monetary fees to be carried out. Further, exist-

ing works assume offloading to be productive whenever remotely

executing an application is able to save energy without degrading

its normal response time (Flores et al., 2015). However, taking an

offloading decision is more complex and additional metrics have

to be considered. There is already a lot of understanding in the lit-

erature regarding the impact of communication latency and band-

width, code execution, energy consumption, execution time, CPU

and memory in the offloading process, yet existing decision mod-

els are limited such that none of them considers all these aspects

and tries to reach a tradeoff among them.

This article emphasizes theoretically and experimentally on

these limitations and advances relevant prominent solutions. We

propose in this work new system model for computations offload-

ing that differs from existing approaches in different aspects and

further contributions. This proposition includes first a novel selec-

tive mechanism to reduce the search space in offloading evalua-

tion. The mechanism considers only frequently invoked, resource-

intensive and time consuming tasks, called hotspots, input for the

decision model, in order to reduce the overhead of the decision

engine. The work also presents a decision model that considers all

of the connectivity properties, energy consumption, CPU and mem-

ory usages and execution time of tasks in order to refine the ex-

ecution environment of tasks. We emphasized in previous work

(Tout, Talhi, Kara, & Mourad, 2016) the effect of such metrics on

the device performance and system survivability. We refine the op-

timization model in this work to make it resilient not only to the

device state but also to the detected hotspots that vary with the

device usage, and to strategies that can be enforced on the de-

vice through the proposed system to control offloading prioritiza-

tion and execution suspension of tasks. We also redesign a genetic-

based algorithm with tailored adaptive fitness evaluation for intel-

ligent offloading decision making process. The evaluation is cen-

tralized to collectively evaluate offloading tasks from different ap-

plications running on the mobile terminal. The results of our ex-

periments demonstrate the capability and highlight the efficiency

of our proposition. In the following, we use the terms computa-

tions, tasks, and components interchangeably.

The originality and novelty of this work are emphasized by the

following contributions:

• Novel system model for computations offloading which goes

beyond existing techniques with selective, centralized and opti-

mized approach.
• A selective mechanism that minimizes the search space and

significantly reduces the overhead of offloading decision eval-

uation.
• An optimization model with metrics crucial to the device re-

sources and applications performance, adaptable to resource

usage, detected hotspots and execution strategies.
• An intelligent centralized decision engine which evaluates the

optimization model through tailored genetic-based algorithm

able to reach optimal dissemination of tasks with minimal eval-

uation cost.

The rest of the article is structured as follows. We review in

Section 2 the basic mobile computation offloading architecture in-
luding the role of each component. In Section 3 , we discuss exist-

ng computation offloading strategies while highlighting our con-

ributions. We emphasize on the problems in Section 4 and present

nsights about our approach in Section 5 . We detail our proposition

n Sections 6 –8 . In Section 9 , we evaluate our proposition and fi-

ally in Section 10 , we conclude the article and draw some future

irections.

. Computations offloading overview

Mobile cloud computing has integrated cloud computing capa-

ilities into the mobile environment to support mobile devices,

anging from outsourcing software and platforms all the way to

nfrastructure. In this context, different offloading concepts have

een studied. The explosive growth of mobile internet applications,

ike social networking services, online gaming, audio and video

treaming, is the main reason behind the significant overload on

he cellular networks. In this context, traffic offloading (Andreev,

yattaev, Johnsson, Galinina, & Koucheryavy, 2014; Fiandrino, Kli-

zovich, Bouvry, & Zomaya, 2015; Han et al., 2010) has been pro-

osed, which is the use of complementary networks like Wi-Fi for

ata transmission in order to reduce the data carried on the cel-

ular network. On the other hand, the limited resources of mobile

evices have triggered another research domain of computation of-

oading, subject of this work, which has different concept and ob-

ective compared to traffic offloading. Code offloading is an oppor-

unistic process that leverages cloud resources (e.g., servers) to ex-

cute computation-intensive components designated by a mobile

erminal. In this process, an offloading decision is taken based on

 cost model that can estimate where the execution is more effec-

ive for the end device. Due to mobility and changes in the net-

ork conditions, device resources, and computation requirements,

he evaluation of this model changes from one execution to an-

ther and hence lead to different decisions. Whether the commu-

ication between the mobile terminal and the cloud resources is

one through the cellular network or Wifi hotspots, the mobile de-

ice user is the one responsible for the additional cost imposed by

sing these channels, which does not raise any economic conflict.

The common architecture of computation offloading is depicted

n Fig. 1 . Set of profilers are installed on the terminal to moni-

or the mobile applications, the environment characteristics, and

he device state. The mobile also contains a solver (i.e., decision

aker) that based on the information gathered by the profilers,

valuates a cost model and generates an efficient distribution of

omponents (i.e., decides about portions to be executed locally and

hose to be offloaded). On the other hand, the cloud infrastruc-

ure offers the servers where the offloaded components are to be

xecuted. Hereafter, we describe each component of this architec-

ure. The mobile terminal includes profilers to monitor different as-

ects. The program profiler is responsible of monitoring multiple

arameters of the component (C) which is candidate for offload-

ng, like energy consumption, execution time and size of data to

e transmitted. The component, which is the offloading unit, can

e a service, method or thread inside the application or even a full

pp. Different methods can be used to identify an offloading candi-

ate, which is also called code partitioning. For instance, some ap-

roaches (Cuervo et al., 2010; Kemp, 2014; Kosta et al., 2012) rely

n the developers to statically annotate explicitly the application

ource code (e.g., [Remoteable], strategy = remote, @Remote), while

thers (Chun et al., 2011) provide automatic mechanism capable of

nalyzing the code and generating potential migration points. The

etwork profiler is responsible of monitoring the network charac-

eristics in terms of availability, type (e.g., wifi, 3G), bandwidth,

atency and energy consumed on transmission. The device pro-

ler inspects the energy consumption on the device as well as the

attery level and CPU utilization to predict critical situations that

H. Tout et al. / Expert Systems With Applications 80 (2017) 1–13 3

Fig. 1. Mobile code offloading architecture.

r

m

I

s

i

p

m

t

2

s

3

w

p

w

p

c

d

c

o

m

T

s

s

s

A

a

B

c

a

i

e

m

p

i

c

s

n

c

o

fi

c

t

d

t

s

t

i

w

c

m

A

t

a

n

fi

T

p

r

a

a

I

c

m

c

d

T

o

p

t

p
equire offloading, and hence trigger the solver. Based on a cost

odel, a solver evaluates the information gathered by the profilers.

t compares the benefit of local and remote execution and a deci-

ion is taken accordingly. If offloading is more beneficial, the code

s invoked remotely; otherwise, it is executed locally. The remote

latform consists of server(s) having higher processing power and

ore resource competency compared to mobile devices, located in

he vicinity like cloudlets (Satyanarayanan, Bahl, Caceres, & Davies,

009) or in the cloud (Amazon, 2016; Google, 2016), which are re-

ponsible of executing the offloaded code.

. Related work

In this section, we review existing offloading approaches and

e classify them based on different key factors to distinguish our

roposition and highlight its contributions.

Cuervo et al. (2010) have proposed MAUI, an offloading frame-

ork that aims to reduce the energy consumption of mobile ap-

lications. The framework consists of a proxy server responsible of

ommunicating the method state, a profiler that can monitor the

evice, program and network conditions, and a solver that can de-

ide whether to run the method locally or remotely. MAUI uses its

ptimization framework to decide which method to send for re-

ote execution based on the information gathered by the profiler.

he results show the ability of MAUI to minimize the energy con-

umption of a running app.

CloneCloud is another offloading approach that has been pre-

ented by Chun et al. (2011) in order to minimize the energy con-

umption and speedup the execution of the running application.

 profiler collects the data about the threads running in this app

nd communicates the gathered data with an optimization solver.

ased on cost metrics of execution time and energy, the solver de-

ides about the best partitioning of these threads between local

nd remote execution. This approach does not require modification

n the original application since it works at the binary level. The

xperiments of CloneCloud showed promising results in terms of

inimizing both execution time and energy consumption of an ap-

lication. However, only one thread at a time can be encapsulated

n a VM and migrated for remote execution, which diminishes the

oncurrency of executing the components of an application.
Gordon et al. (2012) proposed COMET that rely on distributed

hared memory (DSM) systems and virtual machine (VM) synchro-

ization techniques to enable multithreaded offloading and over-

omes the limitations of MAUI and CloneCloud, which can offload

ne method/thread at a time. To manage memory consistency, a

eld-level granularity is used, reducing the frequency of required

ommunication between the mobile device and the cloud.

Following different strategy, Kemp (2014) has proposed Cuckoo

hat assumes compute intensive code to be implemented as an An-

roid service. The framework includes sensors to decide, at run-

ime, whether or not to offload particular service since circum-

tances like network type and status and invocation parameters of

he service call on mobile devices get changed continuously, mak-

ng offloading sometimes beneficial but not always. Cuckoo frame-

ork has been able to reduce the energy consumption and in-

rease the speed of computation intensive applications.

Chen et al. (2012) have proposed a similar framework that auto-

atically offloads heavy back-end services of a regular standalone

ndroid application in order to reduce the energy loss and execu-

ion time of an application. Based on a decision model, the services

re offloaded to an Android virtual machine in the cloud.

ThinkAir has been introduced by Kosta et al. (2012) as a tech-

ique to improve both computational performance and power ef-

ciency of mobile devices by bridging smartphones to the cloud.

he proposed architecture consists of a cloud infrastructure, an ap-

lication server that communicates with applications and executes

emote methods, a set of profilers to monitor the device, program,

nd network conditions, and an execution controller that decides

bout offloading. ThinkAir applies a method-level code offloading.

t parallelizes method execution by invoking multiple virtual ma-

hines (VMs) to execute in the cloud in a seamless and on-demand

anner achieving greater reduction in execution time and energy

onsumption.

Considering user delay-tolerance threshold, new offloading-

ecision making algorithm has been proposed by Xia et al. (2014) .

he proposed tool predicts the average execution time and energy

f an application when running locally on the device, then com-

ares them to cloud-based execution cost in order to decide where

he application should be executed.

CMcloud is a new scheme that aims to maximize the through-

ut or minimize the server cost at cloud provider end by running

4 H. Tout et al. / Expert Systems With Applications 80 (2017) 1–13

Table 1

Classification of offloading approaches.

Approach Offloading Unit Mobile Cost Model Metrics Model Evaluation Evaluation Overhead Generated Dissemination Savings

Energy Time Processing Memory Energy Time Processing Memory

Cuervo et al. (2010) Method � x x x Independent High O/S SO/S SO/S SO/S

Chun et al. (2011) Thread � � x x Independent High O/US O/US O/US O/US

Gordon et al. (2012) Multi-Thread – – – – – – O/US O/US O/US O/US

Kemp (2014) Service � � x x Independent High O/US O/US O/US O/US

Chen et al. (2012) Service � � x x Independent High O/US O/US O/US O/US

Kosta et al. (2012) Method � � x x Independent High O/US O/US O/US O/US

Xia et al. (2014) Method � � x x Independent High O/US O/US O/US O/US

Chae et al. (2014) Method x � x x Independent High SO/S O/S SO/S SO/S

Shi et al. (2014) Method x � x x Independent High SO/S O/S SO/S SO/S

Tout et al. (2016) Generic � � � � Collective High O/US O/S O/S O/S

Our Proposition Generic � � � � Selective Collective Low O/US O/S O/S O/S

i

o

M

e

e

s

t

w

b

w

d

e

s

n

b

w

s

fl

o

d

4

t

4

c

l

b

w

p

w

s

n

s

s

i

i

i

c

t

e

f

a

i
as many mobile applications as possible per server and offer the

user’s expected acceleration in the mobile application execution.

Proposed by Chae et al. (2014) , CMcloud seeks to find the least

costly server which has enough remaining resources to finish the

execution of the mobile application within a target deadline.

COSMOS system has been presented by Shi et al. (2014) with

the objective of managing cloud resources to reduce their us-

age monetary fees while maintaining good offloading performance.

Through its master component, COSMOS collects periodically in-

formation of computation tasks and remote VMs workloads. Based

on the gathered information, COSMOS is able to control the num-

ber of active VMs over time. Particularly, whenever VMs are over-

loaded, the system turns on new instance to handle the upcoming

requests. It can also decide to shut down unnecessary instances to

reduce the monetary cost in case the rest are enough to handle the

mobile devices requests.

From Table 1 , offloading unit identifies the code level granu-

larity where offloading is applied. The mobile cost model metrics

represent the decision model aspects used to evaluate offloading

productivity. Model evaluation show the characteristics of the of-

floading evaluation process, while evaluation overhead reflects the

decision making cost. Finally, savings highlight the gain obtained

by tasks dissemination generated by the decision engine after cost

model evaluation (O and SO stand for optimal and suboptimal

while S and US stand for stable and unstable respectively).

Discussion . Significant attention has been turned toward compu-

tation offloading to support mobile devices. Existing approaches fo-

cused on enhancing performance and saving energy on the mobile

terminal (Chen et al., 2012; Chun et al., 2011; Cuervo et al., 2010;

Gordon et al., 2012; Kemp, 2014; Xia et al., 2014), others targeted

the additional fees imposed by remote execution (Chae et al., 2014;

Kosta et al., 2012; Shi et al., 2014) and in our turn we focused in

previous work (Tout et al., 2016) on addressing performance and

survivability with multiple virtual environments running on the

mobile device. Evaluating the cost model independently for each

task or even collectively cause significant overhead and create it-

self a bottleneck on the mobile terminal with resource constraints,

which is a common limitation in all these approaches. Along with

this overhead, these approaches fall in suboptimal and unstable

savings in the dissemination of tasks due to limited aspects con-

sidered in the cost model.

Differently, this paper goes beyond existing works by proposing

new system model for computations offloading. As independent of-

floading evaluation, proposed in existing approaches, fails to han-

dle circumstances when multiple tasks are running simultaneously

and hence the decision on a task affects the others, we present a

centralized approach able to collectively evaluate offloading tasks

from different applications. Also, we propose a selective mecha-

nism to process offloading evaluation only for selected tasks, des-
gnated as hotspots, which is capable of significantly reducing the

verhead of the decision engine compared to existing approaches.

oreover, the latter evaluates an optimization model that includes

nergy loss, CPU usage, memory consumption and performance of

ach component, essential metrics to augment mobile device re-

ources and performance and not being all considered in any of

he existing works. We emphasize the efficiency of these metrics

here we prove their ability to overcome suboptimal and unsta-

le savings of tasks dissemination. Differently from exiting models,

e also refine the metrics making them resilient not only to the

evice state but also to the hotspots and to strategies that can be

nforced on the mobile terminal like offloading prioritization and

uspension of tasks. The decision engine decodes, for the desig-

ated components, the execution strategy that achieves a balance

etween all the metrics considered in the model, reaching stability

ith high savings in local resource usage and significant execution

peedup. Essentially and differently, the proposed computation of-

oading system model is able to intelligently reduce the overhead

f offloading evaluation without jeopardizing optimality in tasks

issemination savings.

. Technical problems

We highlight in this section the technical problems subject of

his work.

.1. Accuracy and overhead of decision model evaluation

The decision making is an iterative process invoked by the de-

ision engine (solver) and triggered to handle critical situations

ike processing power degradation, storage inefficiency and dying

attery. This process evaluates the decision model to determine

hether to offload particular components or not. In existing ap-

roaches, the cost model is evaluated for each task independently,

hich has its own consequences when multiple applications run

imultaneously on the mobile terminal to meet with daily life

eeds. In one hand, with independent offloading evaluation, the

ystem lacks global view of the execution environment which re-

ults in inaccurate and faulty decisions. On the other hand, repeat-

ng the same process for each task is not reasonable and imposes

n turn considerable overhead on the device, higher than the sav-

ngs achieved by the dissemination if tasks.

The alternative is a centralized collective decision maker that

onsiders the running components from different applications in

he evaluation process. Nonetheless, the overhead of such decision

ngine increases along with the number of components candidates

or offloading. Theoretically, deciding what to offload suffers from

n exponential search space in the number of different possibilities

n which the components can be distributed (i.e., local or remote

H. Tout et al. / Expert Systems With Applications 80 (2017) 1–13 5

e

p

t

B ∑

m

m

t

g

m

t

d

s

e

3

i

h

p

c

s

d

i

fi

4

r

t

b

o

o

t

fl

m

o

w

p

t

m

i

c

w

t

t

e

i

t

t

i

5

s

s

s

C

p

i

n

n

t

c

i

p

f

o

a

c

b

b

s

m

a

t

o

m

f

e

s

w

t

o

p

o

i

e

m

w

d

t

c

m

d

p

a

t

c

a

i

n

f

d

6

c

s

a

6

e

b

i

e

v

m

i

T

c

e

o

t

w

xecution). It is similar to the various ways n distinct objects (com-

onents) can be distributed into m different bins with k 1 objects in

he first bin, k 2 in the second one, etc. and k 1 + k 2 + . . . + k m

= n .

y applying the multinomial theorem, this can be calculated as

k 1 + k 2 + ... k m = n
(

n
k 1 ,k 2 ,k m

)
. In our multi-apps offloading problem,

 = 2 , one bin is the mobile terminal and the other is the re-

ote server thus, for n components, there are 2 n different distribu-

ion possibilities. This number will dramatically increase with fine

rained components like services and will be more crucial with

ethods and threads as their number is greater inside the applica-

ions. Our previous work (Tout et al., 2016) suffered also from this

ilemma, where the results revealed that the evaluation process in

uch case can consume up to 6x more CPU usage and 1.25 × more

nergy consumption than the services themselves, and takes up to

 s to find the distribution. These results pushed towards sacrific-

ng optimality of tasks dissemination savings to mitigate the over-

ead of the evaluation process by accepting suboptimal solution. A

ossible alternative to overcome such overhead is to take the de-

ision remotely, yet this requires sending relevant data to remote

erver which not only imposes in turn more overhead, but also ad-

itional monetary fees are to be carried out. Therefore the question

s how to decrease the overhead of decision making without sacri-

cing optimal distribution of tasks?

.2. Decision model metrics

In the presence of network connectivity and available remote

esources, the offloading decision is based upon number of fac-

ors. The available resource on the mobile terminal, the latency and

andwidth of the network, the resource demands and performance

f the component, any of them can form a context that influences

ffloading feasibility and efficiency. Besides, energy and execution

ime, processing power and memory capacity would critically in-

uences the mobile device when running multiple applications si-

ultaneously. As the energy is being consumed on many elements

ther than CPU and memory, essentially, graphics, screen and net-

ork, decreasing the power consumption does not guarantee more

rocessing power or even more memory availability. As long as

he device is on and new applications are running, both CPU and

emory usage levels continue to change. Therefore, for example,

n case the device is running slow or out of memory, migrating

omponents that require intensive processing and lot of memory

ould be efficient respectively, regardless of the energy consump-

ion level. Thus, each time an offloading decision is to be made,

hese factors should be taken into consideration and an explicit

valuation of these metrics should be done. As none of the exist-

ng techniques has considered and examined a tradeoff among all

hese metrics, what is the effect of such multi-objective optimiza-

ion on the optimality and stability of tasks dissemination savings?,

s a question to be answered in this work as well.

. Centralized selective and multi-objective offloading: insights

The proposed system model is depicted in Fig. 2 . We devote a

et profilers on the mobile terminal to monitor the relevant re-

ources. The profilers examine the availability of connectivity, be-

ide its data rate and latency. They also monitor the energy loss,

PU usage, memory consumption , and execution time for all com-

onents. A component can be service, method, or even thread that

mplements certain functionalities. It should be clear that this does

ot mean that the system deals with components of heterogenous

ature but it is generic enough to be applied independently of

he offloading unit considered. The gathered profiled data are then

ommunicated with the rest of the modules on the device. Captur-

ng different criteria that influence the resource consumption and

erformance of the components, the profiled data serve as input
or the detector to identify hotspot components forming a subset

f the offloading candidates. Frequently invoked, resource-intensive

nd/or time consuming components are marked as hotspots. Such

riteria and the thresholds used for hotspot selection are adjusted

y the strategies controller based on the device state, instrumented

y the profilers. Gathered data are also used by a centralized,

elective and intelligent decision engine, which evaluates a cost

odel to analyze tasks offloading. Only selected hotspots (C 2 , C 3
nd C 4) go into the offloading evaluation process, while the rest of

he components (C 1), not included, continue their execution locally

n the mobile terminal. The decision model consists of essential

etrics that guarantee resource availabilities and enhanced per-

ormance on the mobile device. The controller can enforce differ-

nt strategies in the model to manage offloading evaluation. Such

trategies include weights between the model metrics to adapt it

ith the device state. For example, additional weights can be given

o the memory metric when the device is running out of mem-

ry. Other strategies include priorities between components like

rioritizing offloading from foreground application or even based

n criticality classification. Defining such strategies at high level

n the controller form part of future track, yet this work consid-

rs and adapt to such strategies at the low level of the decision

odel. The latter is hence adaptable with these controls as well as

ith the selected hotspots which vary with the device usage. The

ecision engine includes also a tailored algorithm that examines a

radeoff between the model metrics and dictates accordingly what

omponents to be offloaded and those to run on the mobile ter-

inal (only C 4 is to be offloaded). Offloading computations can be

one through the cellular network of Wifi hotspots. When Wifi ca-

acity is purchased by the cellular network provider, both cellular

nd Wifi capacities should be considered to evaluate the possibility

o process the issued offloading requests as well as to predict the

hannels ability to handle upcoming requests. Yet, in this work we

ssume enough resources to handle mobile computations offload-

ng regardless the wireless technology employed (Wifi or cellular

etwork), which is a fair assumption in the light of the resource-

ul infrastructure of cloud service providers. The following sections

etail our proposition.

. Selective mechanism

To reduce the search space of the decision maker, only hotspot

omponents from the offloading candidates are selected and con-

idered in the evaluation model, while the rest of the components

re to be executed locally.

.1. Hotspots profiling

Profilers on the device generate instrumented data for each and

very component. The produced profiles serve as input data used

y the detector to identify hot components for selective offload-

ng evaluation. The profilers capture different criteria that influ-

nce the resource availabilities and performance on the mobile de-

ice. Generated profile includes for every component, the CPU and

emory utilization, size and execution time and its frequency of

nvocation, which are the criteria we use for hotspots selection.

he detector modules analyzes the logged profile information and

ollects all the components whose processing, memory, data size,

xecution time and frequency of call are greater than given thresh-

ld values respectively. These components are marked as hotspots

o be considered for offloading evaluation. The higher thresholds

ill keep the hotter components.

6 H. Tout et al. / Expert Systems With Applications 80 (2017) 1–13

Fig. 2. System model.

V

Algorithm 1 Hotspots selection.

1: Input: Component set C = { C i , . . . , C n } , each of which is char-

acterized by size s i , invocation frequency f i , CPU usage c i ,

Memory usage m i , Energy consumption e i , execution time t i ;

thresholds for each criteria respectively T s , T f , T c , T m

, T e , T t , and

selection ratio r

2: Output: A subset of hotspot components H ⊆ C

3: H ← ∅
4: for i = 1 to n do

5: isHotspot (C i , s i , T s , H)

6: isHotspot (C i , f i , T f , H)

7: isHotspot (C i , c i , T c , H)

8: isHotspot (C i , m i , T m

, H)

9: isHotspot (C i , e i , T e , H)

10: isHotspot (C i , t i , T t , H)

11: end for

12: if H = ∅ then

13: H ← H ∪ { C}
14: end if

15: if | H| > r then

16: NH ← chooseRand(| H| × r, H)

17: H = NH

18: end if

19: return H

T

(

c

1

i

c

a

m
6.2. Hotspots detection

By default, threshold values are set based on Bayesian average

according to the following formula:

¯
 =

| C| ∗ m +

∑ | C|
i =1

v i
| C| + m

(1)

where, | C | is the components data set size, m is the prior mean

value and v i is the profile data value. However, to provide effi-

cient decision for the distribution of components, the strategies

controller can tune the selection criteria as well as their threshold

values according to the mobile device state instrumented by the

profilers. The device for instance might suffer from high CPU usage,

while after a period of time might run out of memory based on the

number and complexity of the applications on the mobile terminal.

Thus, the priority of the selection criteria can be tuned according

to each situation and some of the criteria might not be consid-

ered in the selection of hotspots correspondingly. The thresholds

values are also adaptable. For instance, normally, the battery level

will clearly drain along with the usage of the device and the ex-

ecution of applications. Therefore with dying battery, even com-

ponents with low energy consumption should be considered as

hotspot. For this end, the energy threshold value can be reduced

by the controller so that even components with small energy cost

on the device would be considered. In this article, we refine the

decision model to consider these adaptations, yet, at high level,

defining such strategies in the controller module is part of future

track.

6.3. Selection algorithm

Algorithm 1 illustrates the process to select hotspots. Com-

ponents from different applications, their profiled data, and the

thresholds values and a selection ratio to limit the number of com-

ponents marked as hotspots, all form the input of this algorithm.
he process starts by initializing an empty set for the hotspots

Line 3) then loops over all the components calling ISHOTSPOT pro-

edure in Algorithm 2 for hotspots identification (Line 4 till Line

1). This procedure fills the hotspot set with components hav-

ng profiled data exceeding the predefined threshold value. Those

riteria which are not considered in the selection process have

 threshold value of −1 , as an indicator used by the controller

odule to vary the selection criteria. ISHOTSPOT returns the set

H. Tout et al. / Expert Systems With Applications 80 (2017) 1–13 7

Algorithm 2 isHotspot.

1: procedure isHotspot (C, v , T , H)

2: if T ! = −1 & C� H then

3: if v > T then

4: H ← H ∪ { C}
5: end if

6: end if

7: return H

8: end procedure

o

f

n

d

e

v

a

h

L

P

s

I

a

4

i

s

O

r

o

w

o

h

7

t

o

a

p

c

o

a

f

o

l

t

s

a

n

i

7

D

a

p

t

t

c

b

a

M

p

fl

m

w

w

o

w

t

b

e

v

T

P

a

i

i

d

W

o

u

M

m

a

t

H

f

e

m

t

M

C

f

c

t

w

m

t

t

s

c

l

7

fl

o

a

s

l

f hotspot components back to Algorithm 1 . If no hotspots were

ound (Line 12), the set is filled with the initial list of compo-

ents (Line 13). In case the number of hotspots exceeds a pre-

efined ratio (Line 15), which is by default n /2 defined based on

mpirical study, the number of hot components are limited to that

alue (Lines 16) with random choice from the components set to

void selecting the same values. Finally the algorithm returns the

otspots set to be considered in the evaluation model (Line 19).

emma 1. The time complexity of Algorithm 1 is O (n) .

roof. The time complexity of the selection algorithm depends

olely on the number of the entries n in the components set C .

nitializing the empty set H (Line 3) takes O (1). Next, running over

ll the elements in the C set to identify hotspot components (Line

–Line 11), takes O (n + 1) and the inner procedure call isHotspot

s of O (1). Checking if the hotspot set is empty (Line 12) and sub-

equently assigning the elements of C to H (Line 13), each takes

(1). Finally, in case the number of elements in H exceeds the ratio

 for hotspot components (Line 15), the algorithm will loop again

n the elements in H to select the appropriate portion (Line 16),

hich takes O (| H| × r + 1) . With H ⊆ C , O (| H| × r + 1) has lower

rder compared to O (n + 1) , the former can be dropped and thus

otspots can be selected in O (n). �

. Centralized selective offloading decision model

We devote this part to present the proposed centralized, selec-

ive and optimized offloading decision model.

Assumptions. We assume in the proposed system model that

ffloading can be prioritized between components. These priorities

re assigned and enforced by the strategies controller. For exam-

le, foreground components can have higher priorities to use lo-

al/remote resources over background ones. This can be also based

n appropriate criticality classification scheme, where more critical

pps will be given for example higher priorities to have better per-

ormance. Also, the execution of tasks might be suspended based

n the device resources. We consider all these strategies at low

evel in the decision model while their definition at higher level is

o be addressed in future work. Additionally, components are as-

umed to be independent and some of them might not be offload-

ble like tasks that require local device data. We also consider dy-

amic environment where the network might not be available and

ts data rate and latency may vary.

.1. Definition

efinition 1. Considering the set of hotspot components, gener-

ted by the selection process, the device state instrumented by the

rofilers and the management parameters values of the controller,

he problem is to find components that should be offloaded and

hose to be executed locally for a tradeoff of enhanced computing

apacity, minimal memory and battery usages on the device and

etter performance. The problem defined as follows:
Given a set of hotspot components H = { c1 , c 2 , . . . , c k } on

 device D , each of which c i needs CP U

local
c i

processing unit,

emor y local
c i

memory, Ener gy local
c i

energy and spends ExecT ime local
c i

eriod of time when executed on the device; while when of-

oaded, each consumes CP U

Remote
c i

processing unit, Memory Remote
c i

emory, Energy Remote
c i

on the device and needs ExecT ime Remote
c i

,

aiting and processing the remote response; αc i an indicator

hether the component c i is offloadable or not, offloading pri-

rities p c i ; network bandwidth Bandwidth and latency Latency ,

eights w (F P)
, w (F M)

, w (F E)
and w (F T)

for the evaluation metrics;

he decision should dictate for each component whether it should

e executed locally or remotely in a way to minimize the overall

nergy loss F E , CPU F C and memory F M

usages on the mobile de-

ice and speedup the execution F T for better experience.

heorem 1. Offloading optimization decision making is NP-Hard

roof. Offloading optimization can be easily seen in the NP-class;

s once a dissemination of components is found, it can be ver-

fied in polynomial time. Next, we will prove that this problem

s NP-Hard via a reduction from the NP-hard multi-objective-m-

imensional Knapsack Problem (MOMKP) (Lust & Teghem, 2012).

e aim in what follows to prove that a solution found for a case

f our multi-apps code offloading optimization problem can be

sed to solve multi-objective-m-dimensional Knapsack. Given the

OMKP - a collection of n items a 1 , . . . , a n , where each item a i has

 weights w ki ∈ N , k = 1 , . . . , m and t values p ki ∈ N , k = 1 , . . . , t

nd a knapsack of m capacities c k ∈ N , k = 1 , . . . , m - we can build

he offloading optimization decision making problem as follows:

aving x applications A = { a 1 , . . . , a x } with y components in each,

orming a set of x ∗y representing k components H = { c 1 , . . . , c k } ,
ach corresponding to an item in MOMKP: Set the resource de-

ands of each component c i in terms of memory and CPU as

he weights of the items in the sack. CP U

local
c i

, and CP U

remote
c i

,

 emory local
c i

and M emory remote
c i

, are CPU and memory usages when

 i is running locally or executed remotely, respectively. Then, set

 E , f T , f P and f M

as the values of each item, where they form the

ost of each component in terms of energy consumption, execution

ime, CPU usage and memory needs respectively. So that
∑ x

i =1 f j
here j = 1 , . . . , 4 formulates each of objective functions in the

odel correspondingly. Accordingly, the knapsack content is a por-

ion of components selected to run on the mobile device such that

he total of each value (cost) is minimized, and vice versa, and a

olution to our problem yields a solution to the MOMKP. After this

omplete proof of the reduction, we conclude that the this prob-

em is NP-Hard. �

.2. Model formulation

In the following, we mathematically formulate the proposed of-

oading evaluation model based on the definitions provided. Built

n top of previously proposed optimization metrics in our latest

chievement (Tout et al., 2016), the model in this work is now re-

ilient not only to the device state but also with the hotspots se-

ection and the execution management strategies defined above.

• Decision Variables:

x = { x c 1 , . . . x c k }
where,

∀ c i,i :1 → k , x c i =

{
0 , if c i is to be executed locally
1 , if c i is to offloaded

8 H. Tout et al. / Expert Systems With Applications 80 (2017) 1–13

)

)

t

v

s

o

(

o

d

(

f

8

l

h

a

2

n

d

l

i

&

u

c

(

a

s

s

o

S

s

f

o

a

c

&

u

m

t

w

2

w

c

t

t

h

i

i

e

8

c

a

u

(

E

r

i

o

n
• Parameters:

D mobile device

H set of hotspot components

c i hotspot component

γc i offloadable component indicator

ExecutionT ime local
c i

time to execute c i locally

ExecutionT ime remote
c i

round trip time to process c i remotely

CPU local
c i

cpu usage on D by c i executed locally

CPU remote
c i

cpu usage on D by c i offloaded

Memory local
c i

memory usage on D by c i executed locally

Memory remote
c i

memory usage on D c i offloaded

Data c i size of data transmitted for offloading c i
power cpu power consumed by D on precessing

power screen power consumed by D on the screen

power idle power consumed by D on idle CPU

power transmission power consumed by D for transmission

p c i offloading priority for component c i
s c i suspension indicator for component c i
w (F E) weight for function F E
w (F T) weight for function F T
w (F C) weight for function F C
w (F M) weight for function F M
˜ T F P threshold for processing load
˜ T F M threshold for memory consumption
˜ T F E threshold for energy loss

• Mathematical Model:

Minimize (F E , F T , F C , F M

) where,

F E =

[| H| ∑

i =1

s c i (1 − x c i) ×((P ower cpu + P ower screen) ×ExecT ime local
c i

+

| H| ∑

i =1

s c i x c i ×
(
(P ower idle × ExecT ime remote

c i
)

+

(
P ower transmission ×

(
Latency +

Data c i
Band wid th

)))

×γc i × p c i

]

× w (F E) (2

F T =

[| H| ∑

i =1

s c i (1 − x c i) × (ExecT ime local
c i

)

+

| H| ∑

i =1

s c i x c i ×
(

ExecT ime remote
c i

+ Latency +

Data c i
Band wid th

)

×γc i × p c i

]

× w (F T) (3)

F C =

[| H| ∑

i =1

s c i (1 − x c i) × CP U

local
c i

+

| H| ∑

i =1

s c i x c i × CP U

remote
c i

× γc i × p c i

]

× w (F C) (4)

F M

=

[| H| ∑

i =1

s c i (1 − x c i) × Memory local
c i

+

| H| ∑

i =1

s c i x c i × Memory remote
c i

× γc j × p c i

]

× w (F M) (5)

Subject to

F P <

˜ T F P (c 1)

F M <

˜ T F M (c 2)

F E <

˜ T F E (c 3)
o
The model aims to decrease energy loss, speed up the execu-

ion, minimize processing and memory usage on the mobile de-

ice, objectives which are defined in Eqs. (2) , (3), (4) and (5) re-

pectively with p c i and s c i to control prioritization and suspension

f tasks accordingly. The model is subject to several constraints;

 c 1) forces the decision maker to look for solutions that do not

verload processing on the mobile device, (c 2) ensure the candi-

ate solutions do not excess the memory on the end terminal and

 c 3) represents the energy constraint that guarantees a threshold

or available power on the device.

. Intelligent decision making process

The proposed intelligent decision maker exploits the smart evo-

ution of solutions in genetic algorithms (GAs) (Deb, 1999), which

ave been able to solve complex optimization problems in many

reas (Cai & Chen, 2014; Grefenstette, 2013; Wu, Chiang, & Fu,

014) through their method of evolution inspired search. Based on

atural selection, GAs simulate the propagation of the fittest in-

ividuals over consecutive generations to determine the best so-

ution. We investigated different algorithms for the decision mak-

ng process. The first algorithm is NSGA-II (Deb, Pratap, Agarwal,

 Meyarivan, 2002), a multi-objective genetic algorithm which

ses pareto ranking mechanism for classification of solutions and

rowding distance to define proximity between them. Next, SPEA2

 Zitzler et al., 2001), which is another multi-objective evolution-

ry algorithm based on pareto dominance, yet characterized by its

trength scheme that not only takes into account the number of

olutions that dominate particular solution, but also the number

f solutions by which it is dominated. The third algorithm is SM-

EMOA (Emmerich, Beume, & Naujoks, 2005), which is a steady

tate algorithm, in which a random selection of individuals is done

or the mating process and the offspring replaces the individuals

f the parent population. Further, IBEA (Zitzler & Künzli, 2004) is

n algorithm that employs a quality indicator in the selection pro-

ess. Finally, MOCell algorithm (Nebro, Durillo, Luna, Dorronsoro,

 Alba, 2009) which is characterized by both decentralized pop-

lation and archive to store non-dominated solutions. We imple-

ented these algorithms as introduced by their authors yet with

he adequate mapping. An extensive study presented in previous

ork (Tout et al., 2016) proves the efficiency of NSGA-II (Deb et al.,

002) over other algorithms. In this work, we redesign NSGA-II

ith adaptive fitness evaluation and evolution-based crossover. Ac-

ording to the optimization model that we presented in Section 7 ,

he intelligent decision maker is capable of generating the distribu-

ion of hot components that minimizes the resource usage and en-

ance the performance. The process adopted by the decision maker

s depicted in Algorithm 3 . Hereafter, we detail the solution encod-

ng as well as the genetic operators, then in Section 9 , we study its

fficiency.

.1. Solution encoding

Each chromosome also called individual in a population forms a

andidate solution in GAs. For offloading decision optimization, the

lgorithm starts with population of N randomly generated individ-

als according to the number of components marked as hotspots

Line 5). Each individual represents the distribution of components.

very individual has a size | H | and it is encoded as a set of bina-

ies x = { x c 1 , . . . , x c k } , where k is the total number of components

nvolved. Each gene x c i of an individual represents a component

n the mobile device and its value dictates whether this compo-

ent should be executed locally on the end terminal (x c i = 0) or

ffloaded (x c = 1).

i

H. Tout et al. / Expert Systems With Applications 80 (2017) 1–13 9

Algorithm 3 Intelligent decision maker.

1: Input: Set of hotspot components H = { c 1 , c 2 , . . . c k } , each of

which is characterized by local and remote execution time, cpu

usage and memory consumption, network characteristics BL in

terms of bandwidth and latency, number of possible solutions

N, mutation rate μm

, crossover rate μc and number of genera-

tions λ.

2: Output: Distribution set of hotspots H

′ .
3: i ← − 0 � i is the population index

4: H

′ ← − ∅
5: G i ← − Random [N][| H|] � generates random population

6: for k = 1 to r do

7: Calculate F E := CalcEnergy (H, G i , BL)

8: Calculate F T := CalcT ime (H, G i , BL)

9: Calculate F C := CalcP rocessing(H, G i)

10: Calculate F M

:= CalcMemory (H, G i)

11: end for

12: for g = 1 to λ do

13: {

14: Propagate b best candidates distributions BC for next

generation G i +1 ← − BC

15: select two solutions from G i , X A and X B ;

16: Generate X C by evolution-based crossover to X A , X B ;

17: Add X C to G i +2 ;

18: Select a solution X b from G i +2 ;

19: Mutate X b and generate new feasible

solution X j ′ ;
20: for k = 1 to r do

21: Reexamine F E := CalcEnergy (H, G i +1 , BL)

22: Reexamine F T := CalcT ime (H, G i +1 , BL)

23: Reexamine F C := CalcP rocessing(H, G i +1)

24: Reexamine F M

:= CalcMemory (H, G i +1)

25: end for

26: Update generation G i = G i +1 + G i +2

27: Update generation index i ← − i + 1

28: if Same fitness is detected in G i +1 and G i +2 then

29: break;

30: end if

31: }

32: end for

33: H

′ ← − optimal components distribution in G i

34: return H

′

8

u

g

v

l

m

p

a

a

o

g

(

a

b

t

d

a

fi

p

r

f

d

8

8

l

r

t

n

8

v

r

a

p

o

i

n

S

o

8

c

s

L

P

n

v

o

g

i

p

n

t

a

t

S

O

b

9

d

9

A

R

fi

T

t

l

a

t

w

r
.2. Fitness evaluation

In GAs, a score/fitness is designated for each chromosome sim-

lating the propagation of the fittest individuals over consecutive

enerations in order to determine the best solution. The fitness

aries based on how efficiently each individual can solve the prob-

em. In our case, the fitness of each candidate solution is deter-

ined by F E , F T , F C and F M

functions that constitute the model

roposed in Section 7 (Line 6 to Line 11). With all these metrics

re to be minimized, the solutions are ranked according to their

bility to speedup the execution and reduce the resources usage

n the mobile terminal.

The fittest b individuals in the population are then selected to

o through a process of evolution (Line 14). In the latter, crossover

Line 15–Line 17) and mutation (Line 18–Line 19) operations are

pplied to produce next generation of individuals for new possi-

le distribution solutions of components. The algorithm reassesses

he model metrics to calculate the fitness of these generated in-

ividuals (Line 20–Line 25). The evaluation process continues over

nd over until any of the stopping criteria is met, where either the

tness of the best individual in successive populations did not im-
rove (Line 28–Line 30) or the defined number of iterations δ is

eached. Finally, the decision maker returns the fittest distribution

rom the last generation having the optimal tradeoff between the

efined metrics (Line 33–Line 34).

.3. Evolution process

.3.1. Selection

In this phase, chromosomes are selected to go through the evo-

ution process. We use bit tournament selection, which involves

unning several rounds over randomly chosen chromosomes from

he population. The winner in each round, which has the best fit-

ess is then selected for crossover.

.3.2. Crossover

Crossover is achieved by exchanging genes between two indi-

iduals with the intent to produce better offspring. With a μc

ate, crossover usually occurs when regions of a chromosome break

nd reconnect to the other chromosome. In contrast, we pro-

ose an evolution-based crossover operator. This operator is based

n the differential evolution of individuals that optimizes offload-

ng. Taking two parents individuals, genes that produce better fit-

ess (smaller fitness value based on the evaluation presented in

ection 8.2) when compared to their parents are used to form the

ffspring.

.3.3. Mutation

Mutation operation is to apply additional modifications in the

hromosomes that improve their fitness. With a μm

rate, we apply

tandard bit flip mutation.

emma 2. The time complexity of Algorithm 3 is O (λN | H |)

roof. The complexity of this algorithm is determined by the fit-

ess function evaluation, the population size, the individual length,

ariation and selection operators and the number of iterations

r generations. Initializing generation index, solution set H

′ and

enerating the first random population has each time complex-

ty O(1) . The evaluation of the fitness function has time com-

lexity of O(N + 1) where N is the population size. The tour-

ament selection, evolution-based crossover and bit flip muta-

ion, have time complexity of O(N| H| λ) where | H | is the size of

n individual and λ is the number of generations. Reassessing

he model is of O(λN) . Finally, the return statement has O(1) .

ubsequently, the time complexity of the algorithm is O(1) +
(N + 1) + O(λN| H|) + O(λN) + O(1) . With lower orders are to

e dropped, this is equivalent to O(λN| H|) . �

. Numerical analysis

We devote this section to present the experimental results that

emonstrate the efficiency of our proposition.

.1. Testbed setup

In the following experiments, the mobile terminal is running

ndroid operating system with quad-core processor and 1GB of

AM. The implementation of a mobile application should follow

rst particular design pattern in order to make it offloadable.

he activity/service model in android allows clear separation be-

ween the application code and its user interface. Particularly, the

ogic code of the computation-intensive tasks can be implemented

s services through an interface definition language (AIDL) while

he user interface is defined using activities. Applying such model

ould facilitate the offloading task as services and activities are al-

eady isolated. For this end, we developed three mobile services of

10 H. Tout et al. / Expert Systems With Applications 80 (2017) 1–13

a

a

s

c

9

9

p

e

a

s

a

t

m

b

m

K

d

m

d

i

o

o

f

i

m

1

w

S

n

t

w
different weights that we use in our experiments to map different

usage scenarios of the device.

• Zip/Unzip is a lightweight service that allows creating archive

folder from files and extracting back the content.
• Virus Scanning is a moderate service that scans files of 100KB

against a library of 10 0 0 viruses signatures, 1 file at a time.
• NQueens Puzzle is a computation intensive service that imple-

ments an algorithm capable of finding all possible solutions of

the typical NQueens problem and returns the number of solu-

tions found. In our version we use N = 13 to create heavy app.

To make these services offloadable, we take advantage of the

offloading libraries provided in Kemp (2014) as it applies the same

design pattern (i.e., activity/service). On first invocation, the of-

floadable services are sent for remote execution on pre-configured

server. Only the .class files of the remote implementation are au-

tomatically packaged as jars and transmitted to the server. With

just few kilobytes, the transmission of such package drives neg-

ligible overhead over the network. Whenever the requested ser-

vices are already hosted on the server, only relevant parameters

are communicated. Yet, the relevant overhead is included in the re-

sults. To profile services, we implemented Linux-based commands

to monitor CPU and memory usages, while we used PowerTutor

(Zhang et al., 2010) to monitor the energy consumption on differ-

ent aspects like CPU, screen and network. As for the power con-

sumption on idle CPU, active network and during transmissions,

we took advantage of the power profile in android (Android, 2016)

to get the relevant information. Finally, we embedded a timer to

monitor the execution of each service. As for the decision mak-

ing algorithm, the configuration is based on empirical study of

50 times of execution. We set μc = 0 . 6 , μc = 1 /n, where n is the

number of decision variables, N = 100 and the number of genera-

tions λ to be 20, 45, 70, 75, 100 for 10 to 50 services respectively.

The connection between the mobile terminal and the server is
Fig. 3. Decision
chieved through WiFi network in infrastructure mode. It is char-

cterized by the IEEE 802.11n wireless networking standard. The

erver side is running Ubuntu 12.04 with 7.3GB memory and quad

ore AMD Phenom(tm) II X4 B95 processor.

.2. Results

.2.1. Decision model efficiency

This set of experiments aims to study the efficiency of the pro-

osed offloading optimization model, which considers energy, ex-

cution time, CPU and memory metrics in the evaluation process

nd its effect on the optimality and stability of tasks dissemination

avings. Running the developed services, we compare the savings

nd performance improvement achieved by our proposition to the

hose provided by existing models presented in Table 1 . The energy

odel adopted by Cuervo et al. (2010) , the time model adopted

y Shi et al. (2014) and Chae et al. (2014) and the energy/time

odel used by Chen et al. (2012) ; Chun et al. (2011) ; Kemp (2014) ;

osta et al. (2012) ; Xia et al. (2014) . Considering the three services

escribed in the setup, we run each of the decision models on the

obile device to make the offloading evaluation and generate the

istribution of these services accordingly. Fig. 3 highlights the sav-

ngs of the services dissemination found by each model in terms

f resource savings and execution speedup.

The energy model shows stable results. However, in terms of

ptimality, this model can lead to the tasks dissemination that of-

ers the best energy savings yet the minimal in terms of process-

ng, memory and execution speedup. The results show that this

odel is able to offer 99% less energy with just 33% less CPU usage,

0% less memory consumption and 59% speedup in the execution,

ith average savings values of 99%, 33%, 10% and 58% respectively.

imilarly, the time model shows stability with 485 tasks dissemi-

ation that provides the best speedup possible of 63% yet worst in

erms of energy with 97%, processing with 33% and memory usage

ith 10% savings, with average of 63%, 97%, 33%, and 10% savings
 savings.

H. Tout et al. / Expert Systems With Applications 80 (2017) 1–13 11

Fig. 4. Decision maker overhead.

r

r

e

i

m

w

5

t

o

t

9

w

c

t

s

9

c

e

t

p

W

t

c

d

o

(

t

i

n

w

s

w

d

t

p

1

1

t

e

i

d

p

a

t

2

t

t

p

p

S

S

v

t

d

c

i

o

t

p

m

Table 2

Decision error rate.

Our

model

Energy

model

Energy/Time

model

Time

model

Decision error rate 0% 80% 50% 80%
espectively. On the other hand, the energy/time model is able to

each optimality with respect to processing, memory, energy and

xecutions speedup with a dissemination that offers average sav-

ngs of 51%, 12%, 98% and 61% savings respectively. However, this

odel shows instability and hence risks finding the dissemination

ith such values and fall in suboptimal results of 33% 10% 97% and

8% savings accordingly. Per contra, our proposition outperforms

he other models and shows stable results in terms of CPU, mem-

ry and execution time with 68%, 15.5% and 63% as average reduc-

ions respectively. As for the energy, our model can reach up to

9% reduction and 97% in the worst case, with an average of 98%,

hich is still comparable to the energy/time model. These results

onfirm that the proposed model is more adequate to offer better

rade-off of resources and performance on the device with higher

tability.

.2.2. Selective mechanism and intelligent decision maker efficiency

The second set of experiments is intended to study the effi-

iency of the selective method in reducing the overhead of the

valuation process and the ability of the decision maker to adapt

o it without jeopardizing finding the optimal distribution of com-

onents. The results of these experiments are depicted in Figs. 4–6 .

e increment the number of services stressing the mobile device

o study the scalability and cover the case of more fine grained

omponents like methods and threads. We cloned the applications

efined in the testbed setup not to implement such large number

f services.

We examine first the overhead of the decision making process

DM) that evaluates our multi-objective optimization model to find

he optimal distribution of services (Fig. 4). The results show that

ncreasing the number of components (i.e., services), imposes sig-

ificant overhead by the decision maker on the mobile terminal

hen no selective method is applied (NSDM). Specifically, they

how drastic increase in the CPU usage of the decision maker that

as 12% with 10 services and reached 28% with 50 services. In ad-

ition, its memory usage increased 7 times, its energy consump-

ion increased 114 times and its speed decreased 31 times. Com-
ared to NSDM, our selective method (SDM) was able to reduce

.2 times the CPU usage of DM, 4 times its memory consumption,

7 times the energy consumption and speedup 13 times its execu-

ion.

Following the distribution generated by the decision maker in

ach scenario, we measured the overhead of the services dissem-

nation as well (Fig. 5). The objective here is to check how the

istribution found by the DM, without considering all the com-

onents (i.e., using our selective method SDM) in the cost-benefit

nalysis, can affect the services overhead. Notably, SDM was able

o find the optimal distribution in many scenarios, namely with

0, 30 and 50 services, and hence did not cause any overhead in

erms of CPU usage, memory consumption, energy and execution

ime of the services in these cases.

Another interesting observation can be highlighted when com-

aring the overall overhead caused by both the DM and the com-

onents on the device (Fig. 6). The results show that even when

DM caused more services overhead than NSDM (scenarios where

DM could not find the optimal solution like when running 40 ser-

ices), the overall overhead remained better for SDM. This is due

o the notable improvement SDM was able to reach in terms of

ecreasing the overhead of the offloading decision evaluation pro-

ess.

Finally, we examine the error rates of non-beneficial offload-

ng. The results are illustrated in Table 2 . The results prove that

ur proposition is always capable of finding the trade-off that op-

imizes the device resources and performance based on the pro-

osed multi-objective optimization model, when other existing

odels risk finding the adequate computations dissemination.

12 H. Tout et al. / Expert Systems With Applications 80 (2017) 1–13

Fig. 5. Components overhead.

Fig. 6. Overall overhead.

m

t

m

t

b

t

w

s

w
10. Conclusion and future directions

This article goes beyond existing approaches with intelligent

system model for computations offloading. The system is able to

collectively evaluate offloading tasks from different applications

that run on the mobile terminal through centralized selective deci-

sion engine. With only hotspots considered in the offloading eval-

uation process, the proposition is capable of significantly reduc-

ing the overhead of the decision engine. The latter evaluates a
ulti-objective optimization model that includes essential metrics

o augment mobile device resources and quality of experience. The

odel is resilient not only to the device state, but also to the de-

ected hotspots and to strategies that can be enforced on the mo-

ile terminal to prioritize offloading and control the execution of

asks. The model was able to offer optimal dissemination of tasks

ith 68% reduction in the CPU usage, 15.5% in the memory con-

umption, 99% in the energy and up to 63% execution speedup,

ith higher stability compared to existing models. According to the

H. Tout et al. / Expert Systems With Applications 80 (2017) 1–13 13

m

t

p

d

t

a

a

w

s

m

t

m

e

o

s

i

T

b

d

t

t

r

a

s

v

r

p

s

v

d

c

c

t

2

f

t

p

p

A

S

t

L

R

A

A

A

C

C

C

C

C

C

D

D

E

F

F

F

F

G

G

G

H

H

K

K

L

M

N

S

S

T

W

X

X

Z

Z

Z
odel, the decision engine decodes, for the designated hotspots,

he execution strategy in order to achieve a tradeoff between the

roposed metrics. The selective mechanism was able to notably re-

uce the overhead of the offloading evaluation process with 1.2

imes less CPU, 4 × less memory consumption, 17 × less energy

nd 13 × speedup while the intelligent decision maker was able to

dapt to this mechanism and generate the dissemination of tasks

ith optimal overall savings.

Promisingly the results give guidance to selective optimized

ystem that can run on resource constrained mobile devices to

anage applications executions while alleviating the overhead of

he offloading evaluation process without jeopardizing the opti-

al distribution of tasks that minimizes processing, memory, en-

rgy loss and speedup the execution on the device. This work

pens several research directions that can be considered by the re-

earch community. The main objective is to maintain good qual-

ty of experience on the device and ensure longer survivability.

herefore, defining and enforcing management policies and rules

etween components on the mobile device in order to refine the

ecision would be a valuable track. While there is still no works

hat give informative decisions in mobile cloud offloading, adap-

ive policy-based approaches (Cimino, Lazzerini, Marcelloni, & Cia-

amella, 2012; Fang et al., 2012) allow managing situations with

wareness for proactive and instructive recommendations. For in-

tance, rather than dictating what components to offload, more

aluable recommendations can be taken based on user preferences,

esource availabilities and device state. Such decisions include sus-

ending and shutting down some applications due to resource

carcity and direct decisions to prioritize the mobile device sur-

ivability over applications performance. While assuming indepen-

ent components on the device reduces cost model complexity,

onsidering the dependencies between components of an appli-

ation is important. With only few works have been proposed in

his regard (Chun et al., 2011; Mahmoodi, Uma, & Subbalakshmi,

016), dynamic analysis of potential execution flow paths of dif-

erent tasks in a mobile application has direct impact on the dis-

ribution decision where the decision to offload or locally execute

articular components can influences the execution of other de-

endents components.

cknowledgment

The work has been supported by École de Technologie

upérieure (ETS), NSERC Canada, the Associated Research Unit of

he National Council for Scientific Research CNRS Lebanon and the

ebanese American University (LAU).

eferences

mazon (2016). Amazon EC2 - virtual server hosting. https://aws.amazon.com/ec2/ .

Accessed: 2016-11-10.
ndreev, S. , Pyattaev, A. , Johnsson, K. , Galinina, O. , & Koucheryavy, Y. (2014). Cel-

lular traffic offloading onto network-assisted device-to-device connections. IEEE
Communications Magazine, 52 (4), 20–31 .

ndroid (2016). Power profiles for Android. https://source.android.com/devices/tech/

power/index.html . Accessed: 2016-11-10.
ai, Z. , & Chen, C. (2014). Demand-driven task scheduling using 2d chromosome

genetic algorithm in mobile cloud. In Progress in informatics and computing (PIC),
2014 international conference on (pp. 539–545). IEEE .

hae, D. , Kim, J. , Kim, J. , Kim, J. , Yang, S. , Cho, Y. , Known, Y. , & Paek, Y. (2014).
Cmcloud: Cloud platform for cost-effective offloading of mobile applications. In

Cluster, cloud and grid computing (CCGrid), 2014 14th IEEE/ACM international sym-

posium on (pp. 434–4 4 4). IEEE .
hen, E. , Ogata, S. , & Horikawa, K. (2012). Offloading android applications to

the cloud without customizing android. In Pervasive computing and communi-
cations workshops (PERCOM workshops), 2012 IEEE international conference on

(pp. 788–793). IEEE .
hun, B.-G. , Ihm, S. , Maniatis, P. , Naik, M. , & Patti, A. (2011). Clonecloud: Elastic ex-
ecution between mobile device and cloud. In Proceedings of the sixth conference

on computer systems (pp. 301–314). ACM .
imino, M. G. , Lazzerini, B. , Marcelloni, F. , & Ciaramella, A. (2012). An adaptive

rule-based approach for managing situation-awareness. Expert Systems with Ap-
plications, 39 (12), 10796–10811 .

uervo, E. , Balasubramanian, A . , Cho, D.-k. , Wolman, A . , Saroiu, S. , Chandra, R. , &
Bahl, P. (2010). Maui: Making smartphones last longer with code offload. In Pro-

ceedings of the 8th international conference on mobile systems, applications, and

services (pp. 49–62). ACM .
eb, K. (1999). An introduction to genetic algorithms. Sadhana, 24 (4–5), 293–315 .

eb, K. , Pratap, A. , Agarwal, S. , & Meyarivan, T. (2002). A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on,

6 (2), 182–197 .
mmerich, M. , Beume, N. , & Naujoks, B. (2005). An emo algorithm using the hyper-

volume measure as selection criterion. In Evolutionary multi-criterion optimiza-

tion (pp. 62–76). Springer .
ang, B. , Liao, S. , Xu, K. , Cheng, H. , Zhu, C. , & Chen, H. (2012). A novel mobile rec-

ommender system for indoor shopping. Expert Systems with Applications, 39 (15),
11992–120 0 0 .

iandrino, C. , Kliazovich, D. , Bouvry, P. , & Zomaya, A. Y. (2015). Network-assisted
offloading for mobile cloud applications. In 2015 IEEE international conference on

communications (ICC) (pp. 5833–5838). IEEE .

lores, H. , Hui, P. , Tarkoma, S. , Li, Y. , Srirama, S. , & Buyya, R. (2015). Mobile code of-
floading: From concept to practice and beyond. Communications Magazine, IEEE,

53 (3), 80–88 .
lores, H. , Srirama, S. N. , & Buyya, R. (2014). Computational offloading or data bind-

ing? Bridging the cloud infrastructure to the proximity of the mobile user. In
Mobile cloud computing, services, and engineering (MobileCloud), 2014 2nd IEEE

international conference on (pp. 10–18). IEEE .

oogle (2016). Google cloud platform. https://cloud.google.com/ . Accessed: 2016-11-
10.

ordon, M. S. , Jamshidi, D. A. , Mahlke, S. , Mao, Z. M. , & Chen, X. (2012). Comet:
Code offload by migrating execution transparently. In Presented as part of the

10th USENIX symposium on operating systems design and implementation (OSDI
12) (pp. 93–106) .

refenstette, J. J. (2013). Genetic algorithms and their applications. In Proceedings of

the second international conference on genetic algorithms . Psychology Press .
an, B. , Hui, P. , Kumar, V. , Marathe, M. V. , Pei, G. , & Srinivasan, A. (2010). Cellular

traffic offloading through opportunistic communications: A case study. In Pro-
ceedings of the 5th ACM workshop on challenged networks (pp. 31–38). ACM .

ung, S.-H. , Shieh, J.-P. , & Lee, C.-P. (2012). Virtualizing smartphone applications to
the cloud. Computing and Informatics, 30 (6), 1083–1097 .

emp, R. (2014). Programming frameworks for distributed smartphone computing.

osta, S. , Aucinas, A. , Hui, P. , Mortier, R. , & Zhang, X. (2012). Thinkair: Dynamic re-
source allocation and parallel execution in the cloud for mobile code offloading.

In INFOCOM, 2012 proceedings IEEE (pp. 945–953). IEEE .
ust, T. , & Teghem, J. (2012). The multiobjective multidimensional knapsack prob-

lem: A survey and a new approach. International Transactions in Operational Re-
search, 19 (4), 495–520 .

ahmoodi, S. E., Uma, R., & Subbalakshmi, K. (2016). Optimal joint scheduling and
cloud offloading for mobile applications.

ebro, A. J. , Durillo, J. J. , Luna, F. , Dorronsoro, B. , & Alba, E. (2009). Mocell: A cel-

lular genetic algorithm for multiobjective optimization. International Journal of
Intelligent Systems, 24 (7), 726–746 .

atyanarayanan, M. , Bahl, P. , Caceres, R. , & Davies, N. (2009). The case for vm-based
cloudlets in mobile computing. Pervasive Computing, IEEE, 8 (4), 14–23 .

hi, C. , Habak, K. , Pandurangan, P. , Ammar, M. , Naik, M. , & Zegura, E. (2014). Cos-
mos: computation offloading as a service for mobile devices. In Proceedings of

the 15th ACM international symposium on mobile ad hoc networking and comput-

ing (pp. 287–296). ACM .
out, H., Talhi, C., Kara, N., & Mourad, A. (2016). Selective mobile cloud offloading to

augment multi-persona performance and viability. Cloud Computing, IEEE Trans-
actions on, PP (99), 1. doi: 10.1109/TCC.2016.2535223 .

u, C.-W. , Chiang, T.-C. , & Fu, L.-C. (2014). An ant colony optimization algorithm for
multi-objective clustering in mobile ad hoc networks. In Evolutionary computa-

tion (CEC), 2014 IEEE congress on (pp. 2963–2968). IEEE .

ia, F. , Ding, F. , Li, J. , Kong, X. , Yang, L. T. , & Ma, J. (2014). Phone2cloud: Exploit-
ing computation offloading for energy saving on smartphones in mobile cloud

computing. Information Systems Frontiers, 16 (1), 95–111 .
iang, L. , Ye, S. , Feng, Y. , Li, B. , & Li, B. (2014). Ready, set, go: Coalesced of-

floading from mobile devices to the cloud. In INFOCOM, 2014 proceedings IEEE
(pp. 2373–2381). IEEE .

hang, L. , Tiwana, B. , Qian, Z. , Wang, Z. , Dick, R. P. , Mao, Z. M. , & Yang, L. (2010). Ac-

curate online power estimation and automatic battery behavior based power
model generation for smartphones. In Proceedings of the eighth IEEE/ACM/IFIP

international conference on hardware/software codesign and system synthesis
(pp. 105–114). ACM .

itzler, E. , & Künzli, S. (2004). Indicator-based selection in multiobjective search. In
Parallel problem solving from nature-PPSN VIII (pp. 832–842). Springer .

itzler, E., Laumanns, M., Thiele, L., Zitzler, E., Zitzler, E., Thiele, L., & Thiele, L.

(2001). Spea2: Improving the strength pareto evolutionary algorithm.

https://aws.amazon.com/ec2/
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0001
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0001
https://source.android.com/devices/tech/power/index.html
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0002
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0003
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0004
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0005
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0006
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0007
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0008
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0009
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0010
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0011
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0012
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0013
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0014
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0014
https://cloud.google.com/
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0015
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0016
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0017
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0018
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0019
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0020
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0021
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0022
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0023
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0023
http://dx.doi.org/10.1109/TCC.2016.2535223
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0025
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0026
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0027
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0028
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0029
http://refhub.elsevier.com/S0957-4174(17)30158-6/sbref0029

	Smart mobile computation offloading: Centralized selective and multi-objective approach
	1 Introduction
	2 Computations offloading overview
	3 Related work
	4 Technical problems
	4.1 Accuracy and overhead of decision model evaluation
	4.2 Decision model metrics

	5 Centralized selective and multi-objective offloading: insights
	6 Selective mechanism
	6.1 Hotspots profiling
	6.2 Hotspots detection
	6.3 Selection algorithm

	7 Centralized selective offloading decision model
	7.1 Definition
	7.2 Model formulation

	8 Intelligent decision making process
	8.1 Solution encoding
	8.2 Fitness evaluation
	8.3 Evolution process
	8.3.1 Selection
	8.3.2 Crossover
	8.3.3 Mutation

	9 Numerical analysis
	9.1 Testbed setup
	9.2 Results
	9.2.1 Decision model efficiency
	9.2.2 Selective mechanism and intelligent decision maker efficiency

	10 Conclusion and future directions
	 Acknowledgment
	 References

