
Future Generation Computer Systems 104 (2020) 92–104

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Cloud federation formation using genetic and evolutionary game
theoretical models
Ahmad Hammoud a, Azzam Mourad a,∗, Hadi Otrok b, Omar Abdel Wahab c,
Haidar Harmanani a
a Department of Computer science and Mathematics, Lebanese American University, Lebanon
b Center for Cyber–Physical Systems (C2PS), Department of EECS, Khalifa University, Abu Dhabi, United Arab Emirates
c Department of Computer Science and Engineering, Université du Québec en Outaouais, Gatineau, Canada

a r t i c l e i n f o

Article history:
Received 14 March 2019
Received in revised form 9 July 2019
Accepted 15 October 2019
Available online 21 October 2019

Keywords:
Cloud federation
Evolutionary game theory
Genetic algorithm
Stability

a b s t r a c t

This paper proposes an approach based on genetic algorithms and evolutionary game theory in order to
study the problem of forming highly profitable federated clouds, while maintaining stability among the
members in the presence of dynamic strategies (i.e. cloud providers joining and/or leaving federations)
that might result in decreased Quality of Service (QoS). Cloud federation helps cloud providers to
take advantage of the available unused virtual machines. It allows the providers to combine their
resources in order to serve a larger pool of requests that could not have been served otherwise.
We tackle the problem of forming federations while maximizing the total profit they yield using a
Genetic Algorithm. However, the main problem may rise after the federation formation where many
cloud providers, due to the dynamicity, may be tempted to reallocated their resources into other
federations for seeking better payoff. Such an act may lead to a decrease in the QoS and cause a
drop in the profit earned by the federations. Thus, we extend the genetic model as an evolutionary
game, which aims to improve the profit while maintaining stability among federations. Experiments
were conducted using CloudHarmony real-world dataset and benchmarked with Sky federation model
previously introduced in the literature. Both the genetic and evolutionary game theoretical models
outperform the benchmarked one. The evolutionary game model gave better results in terms of profit
and QoS’s due to its mechanism of reaching a stable state, in which no provider has incentive to
reallocate his resources into different federations.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing is the practice of delivering computing re-
sources through the internet. The demand on cloud computing
resources has increased in the past few years due to the various
advantages it provides [1] including relieving the burdens of
hosting their own IT infrastructure, getting rid of the maintenance
cost, and saving money by only paying for the resources and
workloads used. Moreover, the performance of such services is
typically monitored by experts, which leads to an increased Qual-
ity of Service (QoS). A cloud provider is responsible for providing
services to the cloud consumers such as infrastructure, computing
resources and storage [2]. They offer Infrastructure as a Service
(IaaS); a model in which computing resources, such as servers and
storages, are made available to the clients. This model, alongside
with the Platform as a Service (PaaS) and Software as a Service

∗ Corresponding author.
E-mail address: azzam.mourad@lau.edu.lb (A. Mourad).

(SaaS), represent the three main cloud computing service cate-
gories offered by cloud providers. One of the fundamentals of
cloud computing is virtualization which allows more than one
virtual machine (VM) to be hosted on the same physical machine.
Virtualization allows the cloud providers to rent out VMs that
provide clients with the functionality needed to execute multiple
operating systems. These VMs can be substitutes of real machines.
Statistics have shown that some of the cloud providers are in a
continuous increase in profit like Amazon Web Service, which is
estimated to acquire 49% more profit than last year’s [3,4].

The increasing demands and expansion of online businesses
resulted with some requests which are big enough so that they
cannot be served by one single cloud provider. For instance, a
client might be requesting 50 VMs, while there are three cloud
providers available in the market, and each of which has only
20 VMs available. In such a case, none of these three providers
can fulfill the client’s request and thus dropping that request, and
losing a potential client. This problem has lead to a new busi-
ness architecture, cloud federation, that consists of merging the
resources of two or more providers together in order to increase

https://doi.org/10.1016/j.future.2019.10.008
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.10.008
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.10.008&domain=pdf
mailto:azzam.mourad@lau.edu.lb
https://doi.org/10.1016/j.future.2019.10.008

A. Hammoud, A. Mourad, H. Otrok et al. / Future Generation Computer Systems 104 (2020) 92–104 93

their capacity of handling large requests [5]. Such an architecture
is beneficial for both parties, i.e., the client who is in need for
computing resources, and the cloud provider having additional
resources. Furthermore, it improves the QoS of the clients’ re-
quests due the interoperability among providers, and allows the
latter to rent out their unused resources. Thus, providers can
increase their profits, and expand their geographical footprints
without the need of new points of presence.

A stable cloud federation is a federation structure in which no
cloud provider has incentive to deviate from its current federation
and join another one, or leave the federation in order to form
a new one. The real challenge in cloud federations is finding an
optimal way to form a stable federation, while maximizing profit.
Several approaches [6–8] have been proposed, however, most of
the reported work in the literature did not take into consideration
the stability. Whereas the work claimed achieving stability, had
restrictions on the participants that prevent some cloud providers
from participating in the federations [9]. Other papers ignored the
fact that providers might reassign their resources to federations
formed based on another set of requests [10].

The objective of this work is to achieve optimality in profit and
stability among federations, which will lead to a better reputation
and to an increase in the profit. In this context, we first address
the problem of constructing cloud federations by introducing
a search heuristic genetic algorithm (GA), inspired by Darwin’s
natural evolution theory. However, despite the fact that it had a
good performance as will be shown in the simulation section, it
did not lead into stable federations that may affect the long term
revenue. In addition, the convergence time was too long. Thus, we
extend it by modeling the formation process as a learning-based
evolutionary game theoretical model, in which the conflict and
cooperation between the cloud providers are considered in the
presence of the dynamic strategy change [11–14]. The purpose
of applying this approach is to reach a state where no one has
incentive to break from his currently chosen strategy, known as
evolutionary stable strategy. Therefore, by reaching such state,
all cloud providers will be fully dedicated to their federations
without the intention of leaving them and reallocating their VMs
to other ones.
The main contribution of this paper is two-fold:

• Maximizing the profit achieved by the cloud federations
using a Genetic Algorithm. Such model can guarantee that
the federations are in continuous increase in the profit until
reaching maximality.
• Modeling the stable formation problem as an Evolution-

ary Game Theory to bypass the dynamicity boundaries and
prevent the loss of profit and reputation. By reaching evolu-
tionary stable strategy, the population can survive any small
mutant invasion.

The remainder of this paper is organized as follows. Section 2
presents the review of the current literature on the federation
formation mechanisms. Section 3 presents and formulates the
problem. Section 4 proposes a solution for the formation problem
using a Genetic Algorithm. Section 5 explains the evolutionary
game theoretical approach, and models the formation problem
as a game. Section 6 provides a numerical investigation about the
used models, while Section 7 states the experimental setup and
analyzes the experimental results. Finally, Section 8 concludes the
paper.

2. Related work

We focus in this section on presenting the work done on
federated cloud computing. In [15], the authors presented the
open cloud federation model by merging computational resources

provided by different cloud providers, as part of the Reservoir
project. The project addressed similar problems such as the lack
of interoperability among cloud providers, and how limited a
cloud provider can be in terms of scalability. The focus, however,
was on the architecture and functionality of such concept, with
no formation mechanism for the federations.

In [7], the authors focused on enhancing the profit of cloud
providers. They advanced a set of mathematical equations for a
provider to make an optimal decision on where and when to
allocate the computing resources. Their main objective was to
maximize the provider’s profit, and not the federation’s. In [6],
the authors derived a linear optimization program whose solution
helps providers in a certain federation to regulate their host-
ing and cooperation decisions on the basis of the encountered
workload and the available pool of resources. In [16], the authors
worked on maximizing the revenue of the cloud service providers
by addressing the provider’s resource selection process from the
shared resource pool; the approach aimed to satisfy the users by
serving them with the desired QoS level. The approach was based
on a multi-choice multi dimension knapsack algorithm to opti-
mize the resource selection process. In [17], the authors sought
to assist providers in overcoming the resource limitation problem.
They provided decision-making policies to help the providers de-
cide whether to outsource requests to other federation members
or to terminate spot VMs in order to free resources for more
profitable VMs. Halabi and Bellaiche [18] proposed a formation
mechanism as a hedonic coalitional game based on factors like
security level and reputation. The main contribution consists of
minimizing the loss in security for cloud providers in order to
avoid insecure federations. The approach did not consider the
impact of this proposed mechanism on the profit of the formed
federations.

In [10], the authors proposed a formation mechanism for
the cloud federations. The formation framework is based on an
algorithm that relies on merging and splitting federations until
finding the near optimal solution. They claimed that their mech-
anism can lead to a stable formation. However, they did not take
into consideration having new requests taking place after the
federations have being formed, thus leading to providers leaving
their federations and joining new ones, for seeking more profit as
rational decision makers. In our previous work [19], we proposed
a minmax game to tackle the problem of having passive malicious
cloud providers in the federations after the formation process
had taken place. However, we did not consider stability as an
issue, nor how it can affect the profit. Dhole et al. [9] worked on
forming the federation formation using trust as a main key among
providers. They claimed that their formation mechanism would
lead to stability, fairness, and maximization in the overall profit.
Unfortunately, their policy places a constraint on the minimum
number of VMs that should be part of a cloud provider if the
provider intends to be part of the federation. Such a policy can
exclude small cloud providers who cannot meet that constraint,
or cloud providers with a small number of VMs available.

In [20], the authors proposed a genetic approach for cloud bro-
kering, called ‘QBROKAGE’. The approach addresses the problem
of forming a federation that meets the QoS requirements of the
application needed. They did not take into consideration how this
will affect the profit, nor how stable the formation is going to be.

Evolutionary game theory has mostly been used in the fields
of biology, economy, and sociology. Lately, it has also been used
to address the problem of bandwidth allocation, in which mobile
users compete over bandwidth from several desktop users to
receive multimedia streaming [21], and to analyze the advanced
persistent threats against cloud storage [22]. More recently, an
evolutionary game has been formulated to model the IoT devices
clustering problem, in which, these devices can autonomously

94 A. Hammoud, A. Mourad, H. Otrok et al. / Future Generation Computer Systems 104 (2020) 92–104

Fig. 1. Cloud federations: a VM’s dilemma.

self-organize into clusters in a fully distributed manner [23]. To
the best of our knowledge, none of the mentioned works tackled
the problem of forming stable cloud federations using genetic and
evolutionary game theory.

3. Stable cloud federation formation problem

In this section, we provide the details of our solution by
highlighting briefly our approach, describing the environment,
and stating the problem and the utility functions used in it.

3.1. Approach overview

As shown in Fig. 1, the main components of the cloud fed-
eration architecture are the cloud providers, virtual machines,
clients, and brokers. A cloud broker is responsible for managing
the cloud providers, and ensuring that the service requested by
the client is being provided [2]. In a nutshell, cloud providers
collaborate by merging together their virtual machines in order
to serve a client who has requested a number of VMs that no
single provider could afford. Once a federation is formed, the
client has to pay the broker in exchange for the service. In return,
the broker shall distribute the profit among the cloud providers.
What complicates the process is the fact that payments may
differ from a federation to another depending on the size of the
request and the duration of the service. Such a discrepancy might
motivate some providers to change their strategies and reallocate
their VMs in other (potentially) more profitable federations. By
reallocating the resources from one federation to another, the
QoS of the federation will drop, which will affect its reputation.
The objective of this paper is to derive a mechanism that main-
tains the QoS of the federations in such dynamic situations by
addressing the stability of these federations using genetic and
evolutionary game theoretical models.

3.2. System model

Let CP = {cp1, cp2, . . . , cpi} denote the set of cloud providers,
and let F = {f1, f2, . . . , fn} represent the set of federations that
serve a set of requests R. Each federation has a number of virtual
machines such that Vfn = {v1(fn), v2(fn), . . . , vm(fn)}, each of
which is provided by a particular cloud provider. In other words,
a federation fi can be represented as a new temporary provider
that has VMs from different cloud providers for a period of time.

3.3. Problem formulation

As stated earlier, the main purpose of our work is to find a
federation structure that maximizes the providers’ profit. This
objective will not be met unless stability is reached since the real-
location of the cloud providers’ resources to different federations
will affect the QoS of the VMs, thus leading to a decrease in the
users’ satisfaction and hence the accrued payment. Formally, the
payoff of the set F of federations at time t can be represented as
follows:

Ut (F) =
∑
fi∈F

Revfi × Rept (fi)−
∑

vk(fi)∈Vfn

OCt (vk(fi))+ TCt (vk(fi)) (1)

such that Revfi is the revenue of federation fi, and Rept (fi) rep-
resents the reputation score of federation fi at time t, derived as
follows:

Rept (fi) =
θfi ∨ γfi

γfi
×

αfi

100
(2)

where γfi represents the average response time of the virtual
machines allocated to federation fi (i.e. the time a federation
takes to respond to a certain request), θfi is the response time
promised by the federation, and αfi is the percentage of availabil-
ity of the federation (i.e. the proportion of time during which the
federations were available to serve requests).

A. Hammoud, A. Mourad, H. Otrok et al. / Future Generation Computer Systems 104 (2020) 92–104 95

OCt (vk(fi)) and TCt (vk(fi)) represent the cost of running the virtual
machine vk(fi), belonging to federation fi, on a certain host at time
t , such that OCt (vk(fi)) is the operational cost of the virtual ma-
chine, which includes CPU usage, memory and storage allocated,
and energy consumption, as follows:

OCt (vk(fi)) =CPUCostt (vk(fi))+MemoryCostt (vk(fi))
+ StorageCostt (vk(fi))+ EnergyConsumptiont (vk(fi))

(3)

TCt (Vk(fi)) is the cost of the traffic incurred by running this VM
at time t . We define the function Payt (fi) to be the payoff collected
by a provider per one virtual machine allocated in federation fi at
time t as follows:

Payt (fi) = Revfi ×
1
ηfi

(4)

where ηfi is the number of VMs inside fi.
Finally, the average payment is calculated using the following:

AvgPayt =
∑
fi∈F

Payt (fi)×
1
κ

(5)

where κ is the number of federations.
Based on the above, the profit maximization problem is formu-
lated for a given set F of federations at time t as follows:

maximize Ut (F) (6)

and the stable formation problem is formulated to be the follow-
ing:

minimize
∑
fi∈F

(Payt (fi)− AvgPayt)2 (7)

which implies minimizing the variability of the made payments;
the less the difference in payments, the more satisfied cloud
providers about their VM placements. Such satisfaction will affect
their resources reallocation decision to other federations. The
wider the gap in terms of payments is, the more unstable the
federations would be.

In the sequel, we provide solutions for the aforementioned
problem using both genetic and evolutionary game theoretical
models.

4. Federation formation using genetic algorithm

Genetic algorithm is a metaheuristic approach that was in-
troduced by John Holland in 1960, and extended by Goldberg
in 1989 [24]. Like any other metaheuristic technique, GA is a
search technique used to efficiently solve complex optimization
problems. Typically, GAs attempt to find a near optimal solution
in a relatively short time. Genetic Algorithms have been applied
in many fields such as computer gaming, investment strategies,
digital circuits, and placement problems. What makes GA attrac-
tive is its simplicity and effectiveness [25]. The main components
of GA are (1) initial population selection, (2) fitness evaluation,
and (3) evolution process.

4.1. Initial population selection

A chromosome is an encoding of a candidate solution. GAs
start usually from a set of chromosomes that are generated ran-
domly or using a particular heuristic and form initial population.
Typically, encoding is problem specific and vary from one prob-
lem to the other. In our problem, we are interested in figuring out
where each virtual machine should be allocated. Therefore, we
use a permutation-based encoding and we model the formation

problem as an ordering problem, where VMs are assigned unique
numbers from 1 to n. A federation formation/destruction shall
be represented by a 0, where different VMs that are assigned
to different federations are separated by 0’s. An example of a
candidate solution can be ‘0 2 4 6 0 1 3 5 0’; this chromosome
implies that there are two federations formed since 3 zeros exist,
where the first federation has VMs number 2, 4, and 6, and the
other federation has VMs number 1, 3, and 5. For the initial
population, instead of generating a set of random chromosomes,
we use a heuristic technique so that the GA can start from a good
point. The heuristic would then aim at assigning cloud providers
to the federations that give them the highest profit.

Algorithm 1 Initial Population Generator
Input: pSize, pRatio, numberOfReq, prices[], vms[]
Output: pArray

1: pArray = Ø
2: totalPayoff = 0
3: for all price ∈ prices do
4: totalPayoff = totalPayoff + price
5: end for
6: for i = 0 to pSize do
7: ind = array[numberOfReq]
8: for all vm ∈ vms do
9: r = random(0, 1)

10: if pRatio ≤ r then
11: randFed = random(0, numberOfReq)
12: ind[randFed] = ind[randFed] ∪ vm
13: else
14: choice = random(0, totalPayoff)
15: temp = 0, counter = 0
16: for all price ∈ prices do
17: if choice ≤ price+ temp then
18: ind[counter] = ind[counter] ∪ vm
19: break
20: else
21: temp = temp+ price
22: counter = counter + 1
23: end if
24: end for
25: end if
26: end for
27: pArray = pArray ∪ ind
28: end for
29: return pArray

The aforementioned heuristic is presented in Algorithm 1,
which takes as arguments the required population size (pSize),
the probability of a cloud provider being careless to whatever
federation he joins (pRatio), the number of requests arrived simul-
taneously (numberOfReq), the set of prices the clients are willing
to pay (prices), and finally the set of virtual machines that are
being allocated for the forthcoming federations (vms). It outputs
a set of chromosomes (pArray), in which, each individual might be
a candidate solution. The algorithm starts by calculating the total
payoff (Line 2 to Line 5) since it will be needed later on during
the decision making phase. It will loop pSize times to produce
pSize different individuals (ind). In each chromosome, and for all
virtual machines, a random decision will be taken (Lines 9 to Line
12) based on the variable pRatio to check whether that virtual
machine will be assigned randomly to a federation, or not. If
not, the virtual machine will follow a federation according to the
profit it can yield (Line 14 to Line 24).

96 A. Hammoud, A. Mourad, H. Otrok et al. / Future Generation Computer Systems 104 (2020) 92–104

4.2. Fitness evaluation

The evaluation step requires a fitness function f (c) which can
be used in order to evaluate a candidate solution c . The fitness
function returns a score for the candidate solution which repre-
sents the federations’ payoff and the variance of the payments.

4.3. Evolution process

The evolution process consists of 3 steps, which are (1) se-
lection, (2) crossover, and (3) mutation. A set of solutions is
produced in each generation, but not all of them are worth re-
producing. The selection phase consists of selecting only the few
chromosomes that are likely to be fruitful. The selected portion
of the candidates will breed a new generation. Our selection
mechanism consists of selecting the best half of the population
and apply the genetic operators (i.e. crossover and mutation) on
them to produce new candidates for the following generation.

A chromosome consists of a set of genes, and in our problem,
a gene is either an identifier of a virtual machine, or a 0 that
refers to the start/end of a new federation. The crossover can
be achieved by exchanging genes between two selected chromo-
somes as an attempt to breed a better offspring. For each two
chromosomes, we generate a random number r between 1 and
the length of 1 individual. We split the two chromosomes at
position r in order to obtain 2 subsequences of genes. Then we
append the right-sided subsequence of the second chromosome
to the left-sided subsequence of the first one to obtain the first
offspring, and repeat the process in reverse to obtain the other
offspring. For example, if the first chromosome is ‘123456’ and
the second is ‘321564’, after crossing at position 3, the offsprings
A and B will be ‘123564’ and ‘321456’ respectively.

Mutation can be applied by altering randomly one value or
more of the chromosome to change the latter into a totally differ-
ent solution that could be better or worse. In our implementation,
we swap 2 genes together to result in a modified individual. For
instance, offspring A can have the third and the fourth values
switched to be ‘125364’.

Algorithm 2 Genetic Algorithm Pseudocode
1: t ← 0
2: initialize_population(P)
3: evaluate_fitness(P)
4: order_candidates(P)
5: while termination condition not met do
6: for all {i, j} ∈ P do
7: {i′, j′} ← crossover(i, j)
8: mutate(i′, j′)
9: P ← {P, i′, j′}

10: end for
11: evaluate_fitness(P)
12: order_candidates(P)
13: remove_worse_half (P)
14: t ← t + 1
15: end while
16: return P[0]

Algorithm 2 depicts the formation mechanism using genetic
algorithm. At line 2, the initial population is being initialized from
the whole search space. The population is generated using the
metaheuristic discussed in Algorithm 1. At line 3, each candidate
solution inside P is evaluated based on the predefined fitness
function. Then, they get sorted from best to worst. The loop at
line 5 will only break when the condition is satisfied, which
might be either reaching a satisfying solution, or the federation

being dissociated. The selection process at line 6 requires pairing
candidates together (with proportion to their fitness), and apply
genetic operators on them (i.e. crossover and mutation at lines
7 and 8). At lines 11, the new population will get evaluated by
the same fitness function used at line 3. Then the population will
get sorted again based on the fitness. At line 13 the worst n/2
candidates will get eliminated from the list, where n represents
the total number of candidates inside. This step is done in order
to reduce the storage utilization of the algorithm. When the
stopping condition is met, the algorithm will return the first
element (i.e. candidate) of the list, which is the fittest so far (line
16).

5. Federation formation using evolutionary game theory

Although GA performs well on improving the profit, as will be
shown in Section 7, it is not able to form stable coalitions which
will affect the profit and reputation on the long run. In addition,
its convergence time is too long due to the fact that the solutions
it provides are based on finding a better candidate from one itera-
tion to another. Thus, to address the aforementioned problem, we
propose in this section an evolutionary game theoretical model,
in which we treat the cloud formation and VMs reallocation as a
game and solve it to overcome the dynamism problem.

5.1. Preliminary

Game theory is the study of optimizing the outcome by math-
ematically determining the best strategy for the players under
their circumstances. All possible outcomes of the games played
by two or more can be represented by what is called payoff
matrix [26]. A strategy represents the Nash Equilibrium if the
first player does not get better outcome by changing his strat-
egy, while the second player is holding to his current strategy.
Therefore, there are no incentives for players to deviate from their
current decisions. Some games might have more than one Nash
Equilibrium, and some others might not have any.

Evolutionary game theory was introduced in [27]. This type
of games shows that the analysis of game theory can be applied
even if a player exhibits different forms of behavior, and does
not always have to be reasonable. It focuses on the dynamics of
strategy change, and which forms of behavior have the ability
to persist among the players. In evolutionary game theory, the
fitness of the individuals has to be evaluated in the context of
the full population, in order to find out whether a particular
player’s strategy is successful or not. Individuals that are more fit
in the population tend to have their strategies being replicated by
others [13].

Evolutionary stable strategy (ESS) is a strategy that once
adopted by a population, it can survive even if it got invaded
by any small group of invaders (i.e. having different strategies).
Once that strategy is reached, it will not change over time. In case
of an invasion, the invaders will die after a few generations due
to the stability of that strategy. This means if a population was
using strategy A, and a few mutants came to this population with
an alternative strategy B - knowing that B being less profitable
than A - then A is ESS if it can survive that invasion, and force
the mutants to switch their strategies to A due to the natural
selection. For instance, let O(A, B) represent the outcome of an
individual choosing strategy A facing another with strategy B. A
is stable if it represents a strict Nash equilibrium ([O(A, A)] > [O(A,
B)]), or if O(A, A) = O(B, A) and O(A, B) > O(B, B). In such cases, no
individual has incentive to break from his current strategy, even
if the population got invaded by a few mutants.

A. Hammoud, A. Mourad, H. Otrok et al. / Future Generation Computer Systems 104 (2020) 92–104 97

Fig. 2. Flow chart of the evolutionary game theory.

The idea behind applying evolutionary game theory is reach-
ing the ESS where stability occurs. Fig. 2 shows the flow chart
of the game, where it can initially starts from any generation
that represents the set of players along with their current chosen
strategies. The evaluation process takes place to weight all of the
strategies that the current players are holding, then it classifies
these strategies as good or bad according to the utility of the
player choosing it. Good strategies are more likely to be replicated
by players who have chosen bad ones. After the replication phase
occurs, a new generation will be born such that utilities of the
strategies are slightly different due to the replication process. At
any time, the evaluation process might lead to no changes as a
result of having all strategies providing the same payoff to their
corresponding players; i.e. ESS is reached. Therefore, all players
are not dissatisfied about their chosen strategies, which leads to
a state where no player has incentive of switching to a different
one.

5.2. Player strategy

As a rational decision maker, a cloud provider always seeks
for gaining more profit. Some federations may provide more
profit for some providers than others. Such federations are more
likely to have more contributors than others. Therefore, the set of
federations would become unstable every time a cloud provider
decides to reallocate one or more of its VMs to another federation,
hence causing a decrease in the outcome and in the reputation
for the whole set. The idea is to have a strongly built set of
federations such that no one has incentive to deviate from its
current federation. Suppose that we have two sets of virtual
machines Vfi and Vfj allocated into two federations fi and fj. These
federations guarantee the amounts X and Y of profit for providers
respectively for each VM contributed to the federation such that
X is higher than Y . Being rational, the owners of the virtual
machines dedicated for fj (i.e. v1(fj), v2(fj), . . . , vm(fj)) are more
likely to start thinking whether they should reallocate their VMs
into fi due to the extra profit they can obtain by switching into the
latter. It is worth mentioning that having extra virtual machines
joining fi will cause the profit given to each single player to be
less than X due to the increase of players while yielding the same
amount of profit obtained by the federation fi. This can happen
if the client was already satisfied with what he had (i.e. client
needed a certain number of VMs, but got allocated with more
than what he needs). Also, fj might not yield the same profit
(i.e. Y) used to have if the resources remaining in this federation
do not meet the requirements set by the client. Therefore, the
total profit of the whole set of federations will be reduced.

5.3. Evolutionary formation game

We study the evolutionary behavior among the cloud
providers who will decide to which federation they are going to
allocate their resources. In evolutionary game theory, a player
is more worried about the payoff that comes from his current
federation. Therefore, we study the problem of how to allocate
the virtual machines owned by the cloud providers into the set
of available federations while seeking the highest possible payoff
that can be acquired. Evolutionary games are often applied in
scenarios that are characterized by large populations (finite and
infinite), where in a small population, stability can be easily
breached and affected when a small number of players change
their strategies after the ESS has been reached [13,23,28]. In
fact, in our approach we have large number of VMs forming
the federations, hence we are dealing with a large population
satisfying the requirement for evolutionary game based solution.
It is worth mentioning that with the wide adoption of the cloud
computing technology, the market is booming and the number
of providers and virtual machines is becoming huge, as shown in
recent reports released by MarketWatch and many others [1,4,
29].
If a federation contains a large number of VMs in such a way
that the supplied resources are more than what was requested,
then the profit of a single VM (Section 3, Eq. (4)) will decrease
because of the increase in terms of cost. Many rational players, as
a consequence, would change their strategy seeking for a better
payoff by joining another federation. Changing the federation of a
certain virtual machine may repeat many times until the provider
is assured that he is getting in return the best possible outcome.
In other words, federations are chosen based on which one can
guarantee the maximum profit possible for each VM. Since it is
hard to reach immediately an optimal decision because of the
huge number of virtual machines that would be allocated in the
federations, we apply the evolutionary game framework in order
to analyze such interactions. The main components of such a
game are the following: (1) players, (2) population, (3) strategy,
and (4) utility. The players in this game are the virtual machines,
controlled by the cloud providers. The population is the set of
all allocated virtual machines. The set of strategies available are
the federations which a virtual machine can be assigned to. The
utility of a player is the payoff (i.e. what he is getting on behalf
of what he is offering). Whenever a cloud provider expects to
find a better payoff for a virtual machine, he would change his
strategy by joining the federation offering more payoff; therefore,
a successful strategy is more likely to be replicated. The notion
of evolution in this evolutionary game theory can be represented
by that replication. To describe this evolution with time, we use
a model called replicator dynamics.
Let x = {x1, x2, . . . , xn} represent the vector of distribution of
strategies in the population, where n is the number of available
federations, such that

n∑
i=1

xi = 1 (8)

The general form of the replicator equation is as follows

ẋi = xi[fi(x)− ø(x)] (9)

where fi(x) is the fitness function of selecting a strategy i (i.e. the
ith federation), which is Eq. (4), and ø(x) is the average fitness
by the population. This average fitness can be calculated by
multiplying each strategy fitness by its proportion in the whole
population, as described in Eq. (10).

ø(x) =
n∑

j=1

xjfj(x) (10)

98 A. Hammoud, A. Mourad, H. Otrok et al. / Future Generation Computer Systems 104 (2020) 92–104

Eq. (9) shows that the proportion of the population for choosing
a successful strategy would increase with time. When the fitness
of every strategy becomes equal, the proportion will not change
anymore. This strategy would become the ESS, since no VM
can find a better payoff in any other federation. Mathematically,
the key is to solve ẋi = 0 for all strategies in order to reach
equilibrium. Algorithm 3 shows how the game works. First, the
initialization of a random solution should take place, where all
VMs are assigned into the set of federations (line 1). We decided
to use the same heuristic used in populating the GA, such that
we pick the best chromosome from the set generated out of
Algorithm 1 since the evolutionary game theory needs to start
from only one solution and not from many like the GA. The game
actually starts at Line 3, where we dive into an infinite loop. Lines
4 − 6 state that the payments issued by the federations should
be calculated in order to calculate the average utility ø(x) at line
7. Decisions are made at lines 8–12, strat(vmj) is the strategy
that the cloud provider has chosen for vmj. Every single virtual
machine can compare its own payoff with the average utility ø(x)
to check whether it is getting paid above or below average, and
based on that comparison, it may decide to switch into another
federation that can provide it with better profit. The switching
part is based on a probability p, which is relative to how much
the current payoff is far from the best strategy. At lines 13–21,
we check if a stable set of federations got established or not by
calculating ẋi for all available federations. ESS will be established
when for all xi ∈ x, ẋi is 0.

Algorithm 3 Evolutionary Game Theory Pseudocode
1: initialize federations
2: t = 0
3: while true do
4: for all fi ∈ F do
5: calculate Payt (fi)
6: end for
7: calculate the average utility ø(x)
8: for all vmj ∈ VMs do
9: if ø(x) > fstrat(vmj)(x) then

10: change strategy with probability p
11: end if
12: end for
13: ESS_Reached = true
14: for all xi ∈ x do
15: if ẋi ̸= 0 then
16: ESS_Reahced = false
17: end if
18: end for
19: if ESS_Reached == true then
20: break
21: end if
22: t = t + 1
23: end while

Our evolutionary game is considered dynamic by nature since
it is time-aware, which enables the players to learn and adjust
their strategies from one time period to another in such a way to
maximize their profit.

The choice of an evolutionary non-cooperative game over
a classical non-cooperative or a coalitional game stems from
the fact that it does not impose any strict assumption regard-
ing the players’ rationality. In fact, a coalitional (or cooperative)
game model is a game model in which players cooperate in
order to create an added value and then share the resulting
profit. Unlike cooperative games, in non-cooperative games (in-
cluding evolutionary ones), players participate individually in

order to maximize their own profits in response to other play-
ers’ strategies. Both classical cooperative and non-cooperative
games models assume that players always make rational choices.
However, in practical scenarios, players might be tempted to
act in an irrational manner due to some external or unexpected
factors, which might be the case in our problem. In this regard,
evolutionary game theory is the best candidate solution since it
accounts for this fact by achieving the equilibrium through the
evaluation process that replicates the successful strategies and
repulse the non-successful ones over the time [30].

Theorem 1. Algorithm 3 leads to a stable set of federations.

Proof. The algorithm solves the replicator dynamics’ ẋi = 0 for all
xi ∈ x. Therefore, the evolutionary equilibrium can be obtained.
There are no incentives to reallocate any of the virtual machines
into different federations in the evolutionary equilibrium since
the rate of selecting a strategy i would be zero.

The evolutionary stable strategy will remain effective even
if a small portion of the players decide to change their feder-
ations [23]. The motivations that might push some players to
change their federations after reaching the stability might be
related to some technical problems in the virtual machines, new
resources added to some federations, or the formation of a new
set of federations. However, even in such cases, our algorithm
will still be able to restore equilibrium in a short time and
converge again to a stable state through constantly replicating the
successful strategies.

5.4. Case study: Two cloud federations

An evolutionary equilibrium is a fixed point of the replicator
dynamics [31]. We show that there exists an equilibrium in the
following scenario:

The evolutionary equilibrium will occur when ẋi = 0. For
simplicity and without loss of generality, suppose now that we
have two federations f1, f2, and a set of providers having η virtual
machines in total that need to be deployed. In order to reach
the equilibrium, we need to solve the following equality (which
means that the providers are indifferent between joining f1 or f2):

f1(x) = f2(x) (11)

The equality can be converted into the following expression:

Revf1 ×
1
ηf1
= Revf2 ×

1
ηf2

(12)

By substituting the ηfi with xi × η, and since we only have 2
strategies, we can express x2 in terms of x1, such that:

x2 = 1− x1 (13)

The equation then becomes:

Revf1 ×
1

x1 × η
= Revf2 ×

1
(1− x1)η

(14)

x1 can then be computed as per Eq. (15) as follows:

x1 =
Revf1 (1− x1)

Revf2
(15)

The stability can be then analyzed through evaluating the Jaco-
bian matrix of the replicator dynamics’ as per the following:

J =

⎡⎣ ∂σxa1(f
a
1 (x)−øa(x))
∂xa1

∂σxa1(f
a
1 (x)−øa(x))

∂xb1
∂σxb1(f

b
1 (x)−øb(x))
∂xa1

∂σxb1(f
b
1 (x)−øb(x))

∂xb1

⎤⎦ =

[
J1,1 J1,2
J2,1 J2,2

]
(16)

A. Hammoud, A. Mourad, H. Otrok et al. / Future Generation Computer Systems 104 (2020) 92–104 99

Table 1
Requests.
Request # Required cores Price ($ per day)

1 6 12
2 8 16
3 10 20

Table 2
Initial solution.
Fed. ID # of VMs Exp. Profit/VM Act. Profit/VM

1 5 2.4 2.4
2 2 8 4
3 5 4 4

The fixed point is considered stable if all of the eigenvalues have
a negative real part [31]:

λ(J) =
(J1,1 + J2,2)±

√
4J1,2J2,1 + (J1,1 − J2,2)2

2
(17)

6. Numerical investigation

In this section, we investigate numerically the process of
forming the cloud federations using our two proposed models,
i.e. genetic algorithm and evolutionary game theory. Consider six
cloud providers, where each one of them has only two available
VMs that are not rented out yet. For simplicity, the VMs have
the same specifications in terms of processors (2 cores each), and
they all have good reputations. Three clients request computing
resources, such that the requirements are 6 cores, 8 cores, and 10
cores, and they are willing to pay 12$, 16$, and 20$ respectively
(Table 1). No cloud provider can serve any of these requests alone,
therefore, an optimal and stable formation should exist to satisfy
both parties (i.e. the providers and the clients). For simplicity, we
assume that the reputation score Rept (fi) for all federations is 1.
An initial solution is generated randomly as a starting point for
both models (Table 2), where the first and the third federations
have each five VMs contributing within, and the second one
has two VMs only. The actual profit that the federation is going
to make will be less than what was expected if the resources
do not meet the requirements. We consider the profit to be a
percentage of what is given. That is, if the client gets half of what
he requested, he pays only 50% of the amount of money agreed
on. However, if he gets served by more resources than what he
actually needs, he only pays the promised amount. The expected
profit differs from a federation to another, which will make the
federations unstable. To calculate the expected profit per virtual
machine of a certain request, we should divide the price by
the number of virtual machines assigned to serve that request.
Whereas the actual profit per virtual machine in a federation is
the actual payoff of a virtual machine, which may differ from the
expected, as previously discussed. The total payoff of the initial
solution is the sum of the actual profit per VM times the number
of contributing VMs per federation, that is 5∗2.4+2∗4+5∗4 = 40.

6.1. Solution using genetic algorithm

We try to stabilize the federations by finding the optimal
formation using Algorithm 2. After the first generation, GA seeks
to come up with a better formation to be a solution for the second
generation by finding a way to increase the payoff (Section 3,
Eq. (1)). Due to the randomness, a possible solution produced by
the GA after several generations could be as shown in Table 3. The
number of virtual machines allocated for the first and last request
decreased by 1 each, i.e. reaching 4. The second federation got
an increase of 2 extra virtual machines coming from the other

Table 3
Solution after several generations.
Fed. ID # of VMs Exp. Profit/VM Act. Profit/VM

1 4 3 3
2 4 4 4
3 4 5 4

Table 4
Solution using evolutionary game theory.
Fed. ID # of VMs Exp. Profit/VM Act. Profit/VM

1 3 4 4
2 4 4 4
3 5 4 4

2 federations, to make the current number of VMs 4. The total
payoff is now 4∗3+4∗4+4∗4 = 44. The solution is acceptable
since it provides a better payoff than all the previous solutions.

6.2. Solution using evolutionary game theory

Evolutionary game theory focuses more on the profit of the
players when switching from a strategy to another. As Algo-
rithm 2 implies, a cloud provider may reassign his VMs based
on a probability p if a different federation promised more profit.
Mathematically, the fitness of the three strategies are 2.4, 8, and
4. The average fitness is 2.4 × 5

12 + 8 × 2
12 + 4 × 5

12 = 4. The
cloud providers allocating their VMs in the second federation are
expected to remain satisfied since it is currently the best possible
strategy. However, the members of the first federation are more
likely to switch their strategy and join other federations with
probability p, where p is calculated based on the gap between
both of the player and average fitness; p = (4−2.4)/4 = 0.4. That
is, 40% of the VMs allocated in the first federation will switch to
a more profitable one. The final solution after a few generations
would be in Table 4, where 3 VMs are allocated for the first
request, 4 VMs for the second, and 5 for that last. In this solution,
no cloud provider has incentive to switch his VMs into another
federation since all federations are providing the same payoff.
All payoffs are equal to the average, which is 4. This strategy is
considered to be evolutionary stable.

7. Experimental evaluation

In this section, we investigate the performance of our two
proposed models compared to the Sky federation model proposed
in [10].

7.1. Experimental setup

We implemented our models using Matlab 9.0 in a 64-bit
windows 10 environment on a machine equipped with Intel Core
i7-4720 HQ having 2.60 GHz as base frequency, 3.60 GHz as max
turbo frequency, and 16 GB RAM. We set up an environment
with 80 cloud providers having different numbers of available
virtual machines varying from 10 to 30. At any time, a number
of clients can request a specific amount of CPU cores. Requests
have been categorized as small, medium, and large [10]. Small
requests consist of 3 federations with less than 240 requested
VMs distributed among them. Medium requests are of size 5 with
less than 400 requested VMs. Large requests consist of 7 feder-
ations with a total requested VMs less than 560 units. Table 5
describes the requests. The challenge is to formulate a stable set
of federations for the received requests. We compared our two

100 A. Hammoud, A. Mourad, H. Otrok et al. / Future Generation Computer Systems 104 (2020) 92–104

Fig. 3. Total profit.

Table 5
Requests types.
Type Number of federations Number of VMs

Small 3 240
Medium 5 400
Large 7 560

models with the sky model in [10] in terms of total profit, utility,
response time, availability, saved energy and saved resources. The
total profit figures are generated based on all requests types,
whereas we considered only the medium type for the rest of
the figures (i.e. utility, response time, availability, resources and
energy saved) due to their similarity. We ran the algorithms of
the two models 100 times and took the average results. We pop-
ulated the QoS metrics by importing data from CloudHarmony
dataset1 in terms of response time and availability, knowing that
CloudHarmony records QoS data for well-known cloud services,
such as Amazon Web Service and Rackspace.

7.2. Results and discussion

The first set of experiments aims to study the total profit
obtained by the set of federations (Fig. 3). In Fig. 3(a), 3(b),

1 http://cloudharmony.com/.

and 3(c), we compare the three models in terms of profit while
forming federations based on small, medium, and large requests
respectively. The x-axis represents the time in hours, which in
each, a payment by client is made. The y-axis represents the
profit amount in dollars. We notice from these figures that by
applying evolutionary game theory, the federations maximize
the profit in a very short period. For small requests, the total
profit increased from 34.6$ to 35.7$ in 7 h (i.e. 7 generations). It
started as 51.5$ for medium requests and reached 55.5$ in 10 h.
For large requests, the profit increased from 80.5$ to 87.5$ in
13 h. The more the number of federations increases the longer
the proposed evolutionary game takes to reach maximality since
the unsatisfied cloud providers will most likely be having more
strategies to switch to. Genetic algorithm starts from the same
point as the EGT (34.6$, 55.5$, and 87.5$ for small, medium, and
large requests respectively) as they both share the same heuristic
mentioned in Algorithm 1. In all three figures, GA seems to always
increase the total profit since it is based on the idea of keeping the
current federation structure unless a new structure that provides
a better profit is found. However, because of the lack of any
smart decision making like the evolutionary game theory, the
improvement pace brought by GA is quite slow compared to
our other model. In fact, it could not maximize profit in the
first 15 generations for the three types of requests, and was
always steps behind our evolutionary game. It could only reach
34.9$, 52$, and 81$ for the three types of requests respectively.
The performance of the sky model was the poorest among the

http://cloudharmony.com/

A. Hammoud, A. Mourad, H. Otrok et al. / Future Generation Computer Systems 104 (2020) 92–104 101

Fig. 4. VM utility. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

three models because their algorithm consists of only forming the
federations from the first hour, and neglecting the fact that the
virtual machines will change federation with time, which makes
it easier for a cloud provider to leave and join other federation in
a very random way, hence leading to an inconsistent state in the
total profit chart; i.e. always increasing and decreasing.

We compare the utility of a VM provider in the federations
in our second set of experiments (Fig. 4). The x and y axes
represent the time and utility a VM provider located in a certain
federation gets. Five federations exist since we considered the
medium request size, each of which is colored differently. In
Fig. 4(a), the first few generations (1 to 9) formed by the EGT
model were chaotic due to the changes applied to the payoff of
each virtual machine from a generation to another. The utilities
vary from 0.2 to 0.335. Stability will take over when all utilities
are the same, and no provider has incentive to switch his virtual
machine to another federation. Things will stabilize at time 10
when all utilities will almost be equal to 0.22. By then ESS will
be reached. However, none of the other two models (i.e. GA and
Sky in Fig. 4(b) and 4(c)) were able to reach stability (at least not
during the first 15 generations). Such an act may lead to a drop
in terms of reputation and QoS.

Moreover, we measured the QoS of the formed federations
(Fig. 5). In Fig. 5(b) and 5(a), we evaluate the availability and
response time of the federations respectively using the three
models. The availability represents the percentage of times the
VMs were able to execute their assigned tasks normally without
being unavailable due to switching federations. The response time

is the time a federation takes to respond to a request. Due to the
lack of continuous algorithm of the sky model, the availability
could not get better than 89%, whereas the GA and EGT models
started at 92%, and kept increasing in terms of availability. When
the EGT model reaches ESS (i.e. time = 10), the federations
become almost 100% available. Also, the EGT model can reduce
the response time due to its stable formation, whereas the sky
model has no learning mechanism; therefore, the response time
would remain high. The GA model keeps on improving slowly in
terms of availability and response time as time evolves.

In the last set of experiments, we measured the saved energy
and resources of the formed federations. Fig. 6(a) shows the
impact of the different models compared based on the energy
consumed by the virtual machines. The energy was calculated
according to the study in [32], in which they studied the power
consumption of VMs while performing networking tasks. The
figure reveals that both the GA and EGT entail less energy con-
sumption through saving up to 1,000,000 and 3,200,000 Joules
per hour respectively at time t = 10. On the other hand, the Sky
approach entails high energy consumption and could not improve
with time due to neglecting the fact that the virtual machines will
change federation with time.

Also, in order to observe the effect of the three models on
the formed federations in term of saved resources (i.e., CPU,
RAM and storage), we measured how these models enhanced
the percentage of saved resources (Fig. 6(b)). We notice that the

102 A. Hammoud, A. Mourad, H. Otrok et al. / Future Generation Computer Systems 104 (2020) 92–104

Fig. 5. Quality of service.

Fig. 6. Energy and resources saved.

evolutionary game model saved up to 6.0% of resources at time t
= 10, i.e., 48 6-cores, 768 GB of RAM, and 7200 GB of storage
on average. The genetic model kept on saving resources until
reaching 1.0% at time t = 10, and up to 2.25% at time t = 15,
which is equivalent to 18 6-cores, 288 GB of RAM, and 2700 GB
of storage on average. On the other hand, the performance of the
Sky model shows a considerable instability compared to the two
other models.

8. Conclusion

Cloud federation is an architecture that allows cloud providers
to make use of their unallocated virtual machines, by merging
their resources together to serve a pool of clients whose requests
cannot be handled by any of these providers alone. In this paper,
we presented two new models to form cloud federations using
genetic algorithm and evolutionary game theory. The genetic
algorithm works on enhancing the total payoff of the federations
from a generation to another by exploring the search space and
finding a better cloud formation. The evolutionary game theory
is somehow different in the sense that it does not take into
account whether the next generation is better or worse. The level
of satisfaction of each cloud provider is the key factor for the
strategy selection. Therefore, it works on reducing the difference
between utilities/profits among providers in order to reach the
evolutionary stable strategy. The results showed that our models
yield greater profit from one generation to another until reaching
maximality. We improved the profit by up to 10% compared to
the Sky model [10]. In addition, the models can enhance the QoS
of the currently formed federations, such as the availability and
response time, which makes these federations more appealing for
clients on the long run. Moreover both models can help in saving
energy and resources. The experiments also revealed that the
evolutionary game theoretical model outperformed the genetic
algorithm in terms of profit and QoS due to the evolutionary
stable strategy. In this context, no provider has incentive of
reassigning any of his virtual machines, which led to raise the
availability of the VMs to reach 100% and reduce the response
time by almost 10%.

A. Hammoud, A. Mourad, H. Otrok et al. / Future Generation Computer Systems 104 (2020) 92–104 103

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This work has been supported by the Lebanese American Uni-
versity and the Center for Cyber–Physical Systems (C2PS), Khalifa
University, Abu Dhabi, UAE.

References

[1] J. Novet, Amazon cloud revenue jumps 45 percent in fourth quar-
ter. CNBC, 2018, Retrieved from https://www.cnbc.com/2018/02/01/aws-
earnings-q4-2017html.

[2] Michael Hogan, Fang Liu, Annie Sokol, Jin Tong, Nist cloud computing
standards roadmap, NIST Special Publication 35 (2011) 6–11.

[3] Sky-high market growth driving demand for cloud infrastructure special-
ists, Networkers, 2018, Retrieved from https://www.networkerstechnology.
com/growth-cloud-dem{and}-infrastructure-specialists.

[4] B. Evans, Top cloud vendors will crush $100 billion in 2018 revenue;
Microsoft, Amazon, IBM hit $75 billion? Forbes, 2018, Retrieved from
https://www.forbes.com/sites/bobevans1/2018/05/21/top-cloud-vendors-
will-crush-100-billion-in-2018-revenue-microsoft-amazon-ibm-hit-75-
billion/#3aaed51c7548.

[5] R. Buyya, J. Broberg, A.M. Goscinski (Eds.), Cloud Computing: Principles
and Paradigms (Vol. 87), John Wiley & Sons, 2010.

[6] S. Rebai, M. Hadji, D. Zeghlache, Improving profit through cloud federation,
in: Consumer Communications and Networking Conference, CCNC, 2015
12th Annual IEEE, IEEE, 2015, pp. 732–739.

[7] Inigo Goiri, Jordi Guitart, Jordi Torres, Characterizing cloud federation for
enhancing providers’ profit, in: Cloud Computing, CLOUD, 2010 IEEE 3rd
International Conference on, IEEE, 2010, pp. 123–130.

[8] M. Guazzone, C. Anglano, M. Sereno, A game-theoretic approach to dis-
tributed coalition formation in energy-aware cloud federations (extended
version), 2013, arXiv preprint arXiv:13092444.

[9] A. Dhole, M.V. Thomas, K. Chandrasekaran, An efficient trust-based
Game-Theoretic approach for cloud federation formation, in: Advanced
Computing and Communication Systems, ICACCS, 2016 3rd International
Conference on, Vol. 1, IEEE, 2016, pp. 1–6.

[10] Lena Mashayekhy, Mahyar Movahed Nejad, Daniel Grosu, Cloud federations
in the sky: Formation game and mechanism, IEEE Trans. Cloud Comput. 3
(1) (2015) 14–27.

[11] Ahmed A Alabdel Abass, Liang Xiao, Narayan B. Mandayam, Zoran Gajic,
Evolutionary game theoretic analysis of advanced persistent threats against
cloud storage, IEEE Access 5 (2017) 8482–8491.

[12] Chonho Lee, Junichi Suzuki, Athanasios Vasilakos, Yuji Yamamoto, Katsuya
Oba, An evolutionary game theoretic approach to adaptive and stable
application deployment in clouds, in: In the 2nd Workshop on Bio-Inspired
Algorithms for Distributed Systems, ACM, 2010, pp. 29–38.

[13] David Easley, Jon Kleinberg, Networks, Crowds, and Markets: Reasoning
About a Highly Connected World, Cambridge University Press, 2010.

[14] J. Newton, Evolutionary game theory: a renaissance, Games 9 (2) (2018)
31.

[15] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I.M. Llorente, R.
Montero, Y. Wolfsthal, E. Elmroth, J. Cáceres, et al., The reservoir model and
architecture for open federated cloud computing, IBM Journal of Research
and Development 53 (4) (2009) 535–545.

[16] S.H. Bhuiyan, M.M. Hasan, Revenue maximization in cloud federation
based on multi-choice multidimensional knapsack problem, in: 2018 21st
International Conference of Computer and Information Technology, ICCIT,
IEEE, 2018, pp. 1–6.

[17] A.N. Toosi, R.N. Calheiros, R.K. Thulasiram, R. Buyya, Resource provisioning
policies to increase iaas provider’s profit in a federated cloud environment,
in: High Performance Computing and Communications, HPCC, 2011 IEEE
13th International Conference on, IEEE, 2011, pp. 279–287.

[18] T. Halabi, M. Bellaiche, Towards security-based formation of cloud
federations: A game theoretical approach, IEEE Trans. Cloud Comput.
(2018).

[19] A. Hammoud, H. Otrok, A. Mourad, O.A. Wahab, J. Bentahar, On the de-
tection of passive malicious providers in cloud federations, IEEE Commun.
Lett. 23 (1) (2019) 64–67.

[20] G.F. Anastasi, E. Carlini, M. Coppola, P. Dazzi, QoS-aware genetic cloud
brokering, Future Gener. Comput. Syst. 75 (2017) 1–13.

[21] G. Nan, Z. Mao, M. Yu, M. Li, H. Wang, Y. Zhang, Stackelberg game
for bandwidth allocation in cloud-based wireless live-streaming social
networks, IEEE Syst. J. 8 (1) (2014) 256–267.

[22] A.A.A. Abass, L. Xiao, N.B. Mandayam, Z. Gajic, Evolutionary game theoretic
analysis of advanced persistent threats against cloud storage, IEEE Access
5 (2017) 8482–8491.

[23] N. Sawyer, M.N. Soorki, W. Saad, D.B. Smith, N. Ding, Evolutionary games
for correlation-aware clustering in massive machine-to-machine networks,
IEEE Trans. Commun. (2019).

[24] J. Sadeghi, S. Sadeghi, S.T.A. Niaki, Optimizing a hybrid vendor-managed
inventory and transportation problem with fuzzy demand: an improved
particle swarm optimization algorithm, Inform. Sci. 272 (2014) 126–144.

[25] S. Rajasekaran, G.V. Pai, Neural Networks, Fuzzy Logic and Genetic Al-
gorithm: Synthesis and Applications (with Cd), PHI Learning Pvt. Ltd,
2003.

[26] D. Fudenberg, J. Tirole, Perfect bayesian equilibrium and sequential
equilibrium, J. Econom. Theory 53 (2) (1991) 236–260.

[27] J.M. Smith, G.R. Price, The logic of animal conflict, Nature 246 (5427)
(1973) 15.

[28] M.A. Nowak, A. Sasaki, C. Taylor, D. Fudenberg, Emergence of cooperation
and evolutionary stability in finite populations, Nature 428 (6983) (2004)
646.

[29] Cloud Computing Server Market Is Booming Worldwide | Intel, IBM,
Amazon, Google Cloud Platform, Salesforce. marketwatch. (2019, April).
Retrieved from https://www.marketwatch.com/press-release/cloud-
computing-server-market-is-booming-worldwide-intel-ibm-amazon-
google-cloud-platform-salesforce-2019-04-23.

[30] J.M. Smith, Evolution and the Theory of Games, Cambridge university press,
1982.

[31] Y.A. Kuznetsov, Elements of Applied Bifurcation Theory (Vol. 112), Springer
Science & Business Media, 2013.

[32] R. Shea, H. Wang, J. Liu, Power consumption of virtual machines with
network transactions: Measurement and improvements, in: IEEE INFOCOM
2014-IEEE Conference on Computer Communications, IEEE, 2014, pp.
1051–1059.

Ahmad Hammoud received his Bachelor degree in
business computing from the Lebanese University and
Master’s degree in computer science from the Lebanese
American University (LAU), Beirut, Lebanon. His current
research interests include cloud and fog federation,
game theory, and security.

Azzam Mourad received the Ph.D. degree in electrical
and computer engineering from Concordia University,
Montreal, Canada. He is an associate professor of com-
puter science at the Lebanese American University
and Affiliate Associate Professor in Software Engineer-
ing and IT department at the Ecole de Technologie
Superieure (ETS), Montreal, Canada. He served/serves
as Associate Editor for IET Quantum Communication
and IEEE Communications Letters, General Chair of
IWCMC 2020, General Co-Chair of WiMob2016, and
Track Chair, TPC member and reviewer of several

prestigious conferences and journals. He is an IEEE senior member.

Hadi Otrok holds an associate professor position in the
department of ECE at Khalifa University of Science and
Technology, an affiliate associate professor in the Con-
cordia Institute for Information Systems Engineering at
Concordia University, Montreal, Canada, and an affiliate
associate professor in the electrical department at Ecole
de Technologie Superieure (ETS), Montreal, Canada. He
received his Ph.D. in ECE from Concordia University.
He is a senior member at IEEE, and associate editor at:
Ad-hoc networks (Elsevier) and IEEE communications
letters. He co-chaired several committees at various

IEEE conferences. His research interests include the domain of computer and
network security, crowd sensing and sourcing, ad hoc networks, and cloud
security.

https://www.cnbc.com/2018/02/01/aws-earnings-q4-2017html
https://www.cnbc.com/2018/02/01/aws-earnings-q4-2017html
https://www.cnbc.com/2018/02/01/aws-earnings-q4-2017html
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb2
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb2
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb2
https://www.networkerstechnology.com/growth-cloud-dem{and}-infrastructure-specialists
https://www.networkerstechnology.com/growth-cloud-dem{and}-infrastructure-specialists
https://www.networkerstechnology.com/growth-cloud-dem{and}-infrastructure-specialists
https://www.forbes.com/sites/bobevans1/2018/05/21/top-cloud-vendors-will-crush-100-billion-in-2018-revenue-microsoft-amazon-ibm-hit-75-billion/#3aaed51c7548
https://www.forbes.com/sites/bobevans1/2018/05/21/top-cloud-vendors-will-crush-100-billion-in-2018-revenue-microsoft-amazon-ibm-hit-75-billion/#3aaed51c7548
https://www.forbes.com/sites/bobevans1/2018/05/21/top-cloud-vendors-will-crush-100-billion-in-2018-revenue-microsoft-amazon-ibm-hit-75-billion/#3aaed51c7548
https://www.forbes.com/sites/bobevans1/2018/05/21/top-cloud-vendors-will-crush-100-billion-in-2018-revenue-microsoft-amazon-ibm-hit-75-billion/#3aaed51c7548
https://www.forbes.com/sites/bobevans1/2018/05/21/top-cloud-vendors-will-crush-100-billion-in-2018-revenue-microsoft-amazon-ibm-hit-75-billion/#3aaed51c7548
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb5
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb5
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb5
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb6
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb6
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb6
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb6
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb6
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb7
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb7
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb7
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb7
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb7
http://arxiv.org/abs/13092444
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb9
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb9
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb9
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb9
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb9
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb9
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb9
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb10
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb10
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb10
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb10
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb10
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb11
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb11
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb11
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb11
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb11
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb12
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb12
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb12
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb12
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb12
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb12
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb12
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb13
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb13
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb13
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb14
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb14
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb14
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb15
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb15
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb15
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb15
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb15
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb15
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb15
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb16
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb16
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb16
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb16
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb16
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb16
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb16
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb17
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb17
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb17
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb17
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb17
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb17
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb17
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb18
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb18
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb18
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb18
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb18
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb19
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb19
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb19
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb19
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb19
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb20
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb20
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb20
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb21
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb21
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb21
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb21
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb21
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb22
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb22
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb22
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb22
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb22
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb23
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb23
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb23
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb23
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb23
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb24
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb24
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb24
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb24
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb24
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb25
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb25
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb25
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb25
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb25
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb26
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb26
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb26
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb27
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb27
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb27
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb28
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb28
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb28
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb28
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb28
https://www.marketwatch.com/press-release/cloud-computing-server-market-is-booming-worldwide-intel-ibm-amazon-google-cloud-platform-salesforce-2019-04-23
https://www.marketwatch.com/press-release/cloud-computing-server-market-is-booming-worldwide-intel-ibm-amazon-google-cloud-platform-salesforce-2019-04-23
https://www.marketwatch.com/press-release/cloud-computing-server-market-is-booming-worldwide-intel-ibm-amazon-google-cloud-platform-salesforce-2019-04-23
https://www.marketwatch.com/press-release/cloud-computing-server-market-is-booming-worldwide-intel-ibm-amazon-google-cloud-platform-salesforce-2019-04-23
https://www.marketwatch.com/press-release/cloud-computing-server-market-is-booming-worldwide-intel-ibm-amazon-google-cloud-platform-salesforce-2019-04-23
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb30
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb30
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb30
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb31
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb31
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb31
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb32
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb32
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb32
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb32
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb32
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb32
http://refhub.elsevier.com/S0167-739X(19)30699-5/sb32

104 A. Hammoud, A. Mourad, H. Otrok et al. / Future Generation Computer Systems 104 (2020) 92–104

Omar Abdel Wahab is an assistant professor at the
Department of Computer Science and Engineering, Uni-
versité du Québec en Outaouais, Canada. He holds a
Ph.D. in Information and Systems Engineering from
Concordia University, Montreal, Canada. He received his
Ms.c. in computer science in 2013 from the Lebanese
American University (LAU), Lebanon. From 2017 to
2018, he was a postdoctoral fellow at the École
de Technologie Supérieure (ÉTS), Canada, where he
worked on an industrial research project in collabora-
tion with Rogers and Ericsson. The main topics of his

current research activities are in the areas of artificial intelligence, cybersecurity,
cloud computing, and big data analytics. He is recipient of many prestigious
awards including Quebec Merit Scholarship (FRQNT Québec). Moreover, he is a
TPC member of several prestigious conferences and reviewer of several highly
ranked journals.

Haidar Harmanani received his BS, M.S, and Ph.D. in
Computer Engineering from the Department of Electri-
cal Engineering and Computer Science at Case Western
Reserve University, Cleveland, Ohio, in 1989, 1991,
and 1994 respectively. He is currently a professor of
computer science at the Lebanese American University,
Lebanon. He is a senior member of IEEE and a senior
member of ACM. He serves on the steering committee
of the IEEE NEWCAS conference and the IEEE ICECS
conference. He has also served on the program commit-
tee of various international conferences. His research

interests include electronic design automation, high-level synthesis, design for
testability, and parallel programming.

	Cloud federation formation using genetic and evolutionary game theoretical models
	Introduction
	Related work
	Stable cloud federation formation problem
	Approach overview
	System model
	Problem formulation

	Federation formation using genetic algorithm
	Initial population selection
	Fitness evaluation
	Evolution process

	Federation formation using evolutionary game theory
	Preliminary
	Player strategy
	Evolutionary formation game
	Case study: Two cloud federations

	Numerical investigation
	Solution using genetic algorithm
	Solution using evolutionary game theory

	Experimental evaluation
	Experimental setup
	Results and discussion

	Conclusion
	Declaration of competing interest
	Acknowledgment
	References

