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a b s t r a c t

Instability within fog federations is considered as a serious problem that degrades the performance of
the provided services. The latter may affect the service availability due to fog providers withdrawing
their resources. It may either lead to failures for some users invocations, or to an increase in the
number of tasks inside the servers’ processing-queue. Such a critical problem strips the fog paradigm
from its main characteristic, the low latency factor. As far as we are aware, no work in the literature
has addressed the problem of encountering unstable fog federations. Their main concerns were
increasing the providers’ payoff regardless of their behavior. To address the aforementioned limitation,
this work studies the stability of the federations through modeling the problem as an evolutionary
game-theoretical model. Moreover, it devises a decentralized algorithm that implants the Replicator
Dynamics model within which expresses the evolutionary dynamics. Experiments are conducted using
EUA Datasets to simulate our algorithm and to show that it leads to an evolutionarily stable strategy
over time, which stabilizes the federations and improves the Quality-of-Service for the users.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The current revolutionary period we are living in was science
iction a few decades ago. Technology redefined the way people
nteract with their surroundings. In particular, Internet-of-Things
IoT) applications have become a necessary part of our lifestyle
owards smart cities [1]. From a smart light bulb, to a smart
ome and a driverless vehicle, IoT devices are everywhere to
mprove our quality of life [2,3]. A statistical study that was
ecently published by Statista1 depicts that the number of IoT
evices will increase from 15.41 billion in the year 2015 to 75.44
illion devices in 2025. Such an increase encourages investors and
takeholders for investing more in the computational resources to
atisfy the huge demand required by IoT devices.
In parallel, cloud providers cannot meet the Quality-of-Service

QoS) requested by the IoT applications due to the high latency
etween the devices and the cloud servers. Such network delays
onstitute a barrier for some applications such as health-care and
utonomous driving where even small delays are costly [4,5].
o address this issue, Cisco2 proposed a new concept called fog

∗ Corresponding author.
E-mail address: azzam.mourad@lau.edu.lb (A. Mourad).

1 https://www.statista.com/statistics/471264/iot-number-of-connected-
evices-worldwide/
2 https://www.cisco.com/
ttps://doi.org/10.1016/j.future.2021.05.021
167-739X/© 2021 Elsevier B.V. All rights reserved.
computing, which extends clouds to the edge of the network in
order to massively reduce the network delays [6]. IoT devices can
now request resources from available nearby fog nodes instead of
communicating with the relatively far-away cloud servers. Never-
theless, fog servers entail high deployment costs leading to limi-
tations in available resources compared to the clouds [7,8]. Hence,
alternative solutions must be explored to satisfy the huge demand
for resources by the Application Service Providers (ASPs). Many
scholars recently addressed the resource limitation problem by
trying to optimally schedule the tasks invoked by the IoT de-
vices [9,10], whereas others considered overcoming such an issue
through placing on-demand fog [11]. However, such alternatives
are not feasible nor efficient when the fog provider, i.e. the party
providing fog nodes, runs out of available resources in the geo-
graphical location having high demands for computing resources.
Thus, federating fog providers would be considered as a conve-
nient solution to overcoming all the aforementioned limitations.

Simultaneously, the concept of fog federations refers to var-
ious participants making use of their unallocated resources, in-
stead of keeping them idle [12]. By reaching an agreement,
the collaborators will be able to handle more tasks than any-
one can handle on its own [13,14]. The advantages of such
collaboration are twofold. On one hand, fog federations allow
offloading tasks among servers (i.e., fog nodes) belonging to
different fog providers for the sake of processing the user re-
quest as quickly as possible, thus improving the QoS for the
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Fig. 1. Fog federations vs. single fog providers.
requests if efficient offloading/resource allocation mechanisms
were applied [15,16]. On the other hand, it enables increasing
the payoff of fog providers by renting out their unused resources
and through expanding their geographical footprints without the
need of being there physically. Hence, through fog federations,
services can be deployed on more geographically distributed
servers whenever there are spikes in the demands for serving
such requests with acceptable QoS. In our experiments, we show
that the federations can boost the service quality by improving
many factors, such as the response time. In order to figuratively
demonstrate the effectiveness of the fog federations, Fig. 1 illus-
trates how the ASPs are renting resources from fog providers to
deploy their services. From the other side, users are trying to
access these services by sending requests to the servers running
the desired applications. Internally, federation members may
offload requests to other members within the same federation
in order to shorten the waiting delay for the requests. Thus, as
illustrated, the latency values for the users are reduced, leading
to a faster processing of the requests when the providers are
federating compared to the typical single fog providers. It should
be emphasized that the presented latency values in Fig. 1 are
estimated after considering some cases from the dataset used in
our simulation.

1.1. Problem statement

To motivate the concept of federating fog providers, we show
in Fig. 2 the response time of serving the requests, with and
without federations, using models presented in this paper. Pre-
cisely, using Matlab, we apply the initial formation mechanism
by employing the K-means technique (presented in Algorithm
1) merged with the greedy service deployment mechanism (pre-
sented in Algorithm 2) in order to evaluate how a cluster of
providers can cooperate for serving invocations compared to hav-
ing each provider relying on its resources separately. The X-axis
represents the timeline (in terms of hours), whereas the Y -axis is
the response time (in milliseconds). The purple and the orange
lines are the response time the servers need to process the
22
requests issued by the IoT device with and without federating.
We notice that at any specific time, the federation was able to
guarantee a satisfactory response time on average due to the
cooperation among fog providers. The response time is reduced
by almost 26% on average when the services are being handled
by fog federations. On the other hand, if the providers show no
cooperation, then in some situations the QoS requested by the
services could not be reached, leading to penalties. For instance,
the fog providers, as rational decision-makers, might feel urged
to renege on their commitments and deviate from their feder-
ations for seeking better ones that can satisfy them. Such an
act reflects negatively on the federations that are suffering from
members loss, due to the decrease of the shared resource pool
in terms of computational capabilities and points-of-presence.
These federations are referred to as unstable fog federations.

Hence, how can such fog federations be efficiently formed? It
is a dilemma that encounters every fog provider due to the fact
that the members of the federation directly affect the QoS [17]. It
becomes challenging for fog providers to remain stable, i.e. choos-
ing a federation and remaining committed to it instead of chang-
ing to another one. To the best of our knowledge, none of the
proposed solutions have yet tackled the aforementioned problem.

1.2. Contributions

In this paper, we address the raised problems by proposing a
novel fog formation scheme embedding evolutionary game theo-
retical model. Our approach offers to form stable fog federations
in which no member has incentives to reallocate his resources
somewhere else. We form the initial set of federations using
the k-means clustering technique. It is an unsupervised learning
model that forms clusters based on the similarities among nodes.
Afterwards, we extend the formation with a learning-based evo-
lutionary model. Such a game studies the conflict and cooperation
among fog providers in the existence of dynamic strategies. It
encompasses a state (strategy) where no fog provider has in-
centives to change its current federation, i.e. evolutionary stable
strategy. We also propose a greedy service placement algorithm
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Fig. 2. Response time of requests with vs. without federations.

to cope with placing the services on the evolved generation in or-
der to maintain relatively short network delays. The evolvement
from a generation to another is presented using a decentralized
algorithm that can be executed by the providers separately for
reaching stability. We use EUA Datasets [18], containing data
collected from real IoT devices, to simulate and evaluate our
approach while comparing it with Genetic, Greedy, and Hedonic
approaches. Experimental results explore that our proposed ap-
proach increases the total payoff for the federations and improves
the QoS in terms of stability, response time, and availability. It
is worth to mention that we have previously published a work
addressing the cloud federation formation using Genetic and Evo-
lutionary mechanisms [19]. Nonetheless, this work differs from
the latter in terms of novelty and formalism due to the nature
of the fog computing paradigm. Federated fog, different from
federated cloud, is considered as a critical paradigm that supports
real-time IoT applications due to the existence of fog servers
near the IoT devices, hence the objective varies. In addition,
applications are strongly dependent on reaching their desired QoS
to keep providing a delay-free and smooth service which is not a
crucial issue in the cloud federation paradigm. Furthermore, our
proposed solution is boosted by a K-means clustering technique,
followed by a latency-aware service placement mechanism and
then by a decentralized/parallel decision making technique that
is executed by the fog providers to imitate a further realis-
tic environment. Thus, the main contributions of this work are
summarized as follows:

• Adopting an evolutionary game mechanism that simulates
the dynamicity of the fog providers, in terms of rational and
irrational decision making. To the best of our knowledge,
no previous work has ever addressed the dynamic strategies
that encounter such a paradigm.
• Forming the initial set of fog federations using the k-means

clustering technique. Such a technique allows forming fed-
erations based on providers’ similarities. In our algorithm,
we use the location of the providers to join neighboring fog
providers altogether.
• Advancing a latency-aware greedy approach for placing ser-

vices on the available fog nodes within the federation.
• Devising a decentralized algorithm for fog providers that

leads to stabilizing the federations through reaching the

evolutionarily stable strategy.
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Outline of the paper. The rest of the paper is organized as
follows. In Section 2, we overview the literature and compare the
solutions in the literature with respect to the proposed approach.
In Section 3, we formulate the federation formation problem.
In Section 4, we propose our algorithm for solving the problem
by employing an initial k-means clustering to form the initial
set of federations, and then, studying the dynamicity of the fog
providers through advancing an evolutionary game theoretical
approach. We provide a numerical example in Section 5. After
that, we discuss the results of running our algorithm to form the
stable fog federations in Section 6. Finally, we give a conclusion
in Section 7.

2. Related work

In this section, we give an overview of the literature and
highlight on what is needed for advancing a quality fog federation
formation mechanism.

2.1. Cloud federation formation approaches

Due to the wide range of techniques used for forming cloud
federations, we select and discuss the most recent ones in this
subsection. In [19], the authors advanced an approach based on a
genetic and an evolutionary models to reach a cloud federations
formation that is highly profitable, while reinforcing the stability
among cloud providers. In [20], the authors addressed the prob-
lem of encountering passively malicious providers allocating their
resources within cloud federations. They proposed a Maximin
game-theoretical model that assists the broker to maximize the
detection of the malicious providers. They were able to maximize
the detection of malicious providers and improve the profit and
QoS of the federations. In [21], the authors focused on increasing
the profit of cloud service providers. They assisted the providers
by making optimal decisions on where and when to allocate
their computing resources. A linear optimization program was
derived in [22] for helping the providers in a certain federation
to tune their hosting and cooperation decisions according to
the encountered workload and the available pool of resources.
In [23] the authors advanced a technique for integrating re-
source and reputation management in the context of collabora-
tive cloud computing. Their approach ameliorated the QoS offered
due to the existence of a price-assisted resource/reputation con-
trol component. In [24], a formation mechanism was proposed
to build a near-optimal federation. Mainly, their algorithm con-
sists of merging and splitting clusters of providers together until
reaching the best solution possible. Authors in [25] addressed
the formation problem by using trust as a measurement among
providers. They claimed to reach stability, profit maximization,
and fairness through their formation mechanism. In [26], the
authors proposed a genetic approach for cloud brokering. Their
approach consists of forming the federations according to the QoS
requested by the applications. However, none of the aforemen-
tioned works have considered the latency factor in its mechanism,
where it is an essential component in forming fog federations
for real-time applications. Thus, they cannot be applied to the
fog level. Hence, a need for dedicated fog federation formation
techniques rises in order to maintain an adequate QoS.

2.2. Fog service deployment and task-scheduling approaches

Initially, some works considered increasing the QoS by de-
creasing the latency between the fog and IoT devices. In [29], the
authors presented a latency-aware application module manage-
ment policy that increases the QoS and optimizes resource usage.
Their policy can identify which applications should be deployed
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Table 1
Comparison among related work.

Latency-aware Dynamic providers
behaviors

Decentralized
mechanism

Stable
solution

[27] ✓ x ✓ ✓
[10,28] ✓ x ✓ x
[19] x ✓ x ✓
[21] x x ✓ x
[24,25] x x x ✓
[20,22,26] x x x x
[8,9,11,23,29–34] ✓ x x x
Our solution ✓ ✓ ✓ ✓
on the lower fog nodes (near the devices), and which shall be
shifted to the upper fog nodes. In [9], the authors addressed
the problem of forming fog clusters to locally process the set
of offloaded requests by multiple users. The proposed approach
covers both the task scheduling problem and cluster formation.
The authors of [10] covered the same problem, however, they
modeled the formation process as a coalitional game, where each
player (fog node) joins its preferred cluster. In [35], a game
theoretical model was proposed to increase the performance of
the services by forming and joining communities to stabilize
them and increase the QoS. In [8], the authors highlighted the
problem of deploying fog servers, and how costly it can be.
They proposed a dynamic mobile cloudlet cluster policy for fog
computing by using cloudlets as a supplement for the fog server
for offloading. The problem of allocating a set of docker containers
to a set of volunteering devices to provide services on the fly was
studied in [11]. Their main aim was to provide efficiently enough
resources for real-time IoT applications requiring computation
processing. They used a Multi-Objective Memetic algorithm to
solve that problem. In [34], the authors addressed the need for a
fitting service placement strategy in the Fog-to-Cloud infrastruc-
ture. Their aim was to design offloading strategies among cloud
and fog resources. In [32], the authors advanced a model based
on Reinforcement R-learning where they study the behavior of
services’ users and produce a suitable fog placement schedule
based on the concept of average reward. Some scholars tackled
the latency problem by developing an approach based on Match-
ing game theory to derive intelligent scheduling decisions [28].
However, all of these efforts are not convenient in case of the ab-
sence of available resources for scheduling the tasks. In addition,
most of these works lack a business-driven model that motivates
the participants to show cooperation when deploying services.

2.3. Fog federation-based solutions

The concept of federating fog providers is still in its early
hases. To the best of our knowledge, there are few published
orks tackling specifically federations in fog that can directly,
r indirectly, enhance the QoS. In [27], the authors tackled the
oncept of federating fog providers for the sake of improving the
atter’s payoff. They modeled the problem as a Hedonic game with
ransferable utility where players are the fog providers seeking to
aximize their own payoff. The authors in [30] provided a solu-

ion to reduce the latency of streaming video through federations.
n particular, their approach was based on evaluating whether
t was more convenient to fetch cached video data from neigh-
oring nodes or to process them independently. In [31], authors
roposed a micro-level resource management mechanism for fog
ederations, where they implemented a price-based workload
alancing technique to limit offloading among units relative to
ther consortium members. In [33], the authors devised a novel
ederated fog architecture and modeled the federated fog for-
ation problem using genetic and machine learning approaches

o optimize the QoS. However, to the best of our knowledge,
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the main limitation of the fog federated-based solutions in the
literature is not taking into account the fog providers’ dynamicity.
The abandonment of a critical provider on a particular federation
may lead to reducing the offered QoS, resulting in a state of
dissatisfaction among the ASPs.

2.4. Analysis

Table 1 highlights the main features of the related work com-
pared to our proposed mechanism. Clearly, none of the aforemen-
tioned works in the literature has considered all of the latency
factor, dynamicity, independence in decision making, and stabil-
ity when forming the federations. Such four factors altogether can
enhance the quality of the formed fog federation.

3. System model and problem formulation

Let us consider a set of fog providers P = p1, p2, . . . , pn, each
of which has a number of servers Spi = s1, s2, . . . , sm located at a
particular geographical locations. Such servers are characterized
by their processing power, measured in million instructions per
second (MIPS). F = f1, f2, . . . , fh is the set of federations un-
der which the fog providers unite to form coalitions. We refer
to the providers allocated in federation fi at time t by Pfi . At
the same time, ASPs need to offer their services to the users
in such a way that the offered QoS should meet the required
minimum, otherwise the applications function poorly and ASPs
lose some of their users. The federations handle sets of services
by deploying them on the providers’ servers (fog nodes). The
set of applications allocated to federation fi is represented by
set Afi = a1,fi , a2,fi , . . . , ao,fi . Likewise, each user is located at a
specific location and is enrolled in a set of applications that sends
out requests to the servers hosting these applications in order to
process at a certain rate. Let the set Usraj = u1,aj , u2,aj , . . . , uq,aj
represent the users requesting service aj (see Table 2).

The accrued cost Cpi for a certain fog provider pi is represented
by the sum of the operational cost which is a function of CPU
usage cost, storage and memory allocated, and energy usage of
all of its servers OC(sj), in addition to their traffic cost in terms of
allocated bandwidth TC(sj) as in the following equation:

Cpi =
∑
sjϵSpi

(
OC(sj)+ TC(sj)

)
(1)

For a fair monetary distribution to the federation members,
every fog provider pi receives a percentage of federation fi’s total
payoff. We consider the utility to be the cost of the servers
subtracted from the payoff, divided by the computation power
of the servers (i.e. total MIPS within the federation). Such utility
can be expressed as follows:

U(fi) =

(∑
ak,fi ϵAfi

Payment(ak,fi )× σak,fi
−

∑
pkϵfi

Cpk

)
∑ ∑

Pow(s )
(2)
pkϵPfi slϵSpk
l
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able 2
efinitions.
Symbol Description

P set of all fog providers
pi fog provider i
Spi set of all fog nodes (servers) belonging to pi
si fog node i
F set of all fog federations
fi fog federation i
Pfi set of all fog providers allocated within fi
A set of all applications (services)
Afi set of all applications (services) that belong to fi
ai application i
Usr set of all users
Usrai set of all users of application i
σak,fi

discount factor of application ak for federation fi
αak deduction rate for not meeting ak ’s requested QoS
OC(si) operational cost of si
TC(si) traffic cost of si
C(pi) total cost of pi
Payment(ak,fi ) the payment from ak ’s ASP to fi
Pow(si) si ’s computation value in terms of MIPS
U(fi) utility of fi
Ū average utility of F
Rpj,fi

payoff of provider pj from federation fi
ρ the number of fog federations
x the vector of distribution of available strategies
xi the percentage of the population adopting strategy i
fi(x) fitness function for strategy i
ν(x) the average fitness by the population

where Pow(si) represents the value of server si in terms of com-
puting power (i.e. MIPS) and σak,fi

is considered to be the discount
factor that alters the regular payment issued by the application
ak content provider if the federation fi is not able to meet the
minimum requirements and it can be expressed as:

σak,fi
=

{
1 if QoS is met,
αak otherwise.

(3)

where αak is the deduction rate due to not meeting the QoS,
e.g. the average response time is above the agreed threshold.

Hence, the payoff of a provider pj,fi can be calculated as the
following:

Rpj,fi
= U(fi)×

⎛⎜⎝ ∑
skϵSpj,fi

Pow(sk)

⎞⎟⎠ (4)

To stabilize the set of federations, we need to reduce the
variability of the payments per share. The least the difference
among the latter, the more satisfied the fog providers would be,
leading to fewer deviations from the federations. Such stability
can be represented by the equation below:

minimize
∑
fiϵF

(Ū − Ufi )
2 (5)

where Ū is the average utility which is calculated using the
following:

Ū =
∑
fiϵF

Ufi ×
1
ρ

(6)

where ρ is the number of fog federations.
In the next section, we will discuss the formation and sta-

bility mechanism used to overcome the problem of unstable
federations.

4. Evolutionary federated fog formation

Our proposed scheme is based on defining the formation pro-
cess as an evolutionary game where each player has a preference
25
Fig. 3. Evolutionary game theory flowchart.

unction that leads the whole set of federations into its stable
tate.

.1. Background

Game theory is the science of the optimal decision-making
f independent and competing players in a strategic environ-
ent [36]. Evolutionary game theory is used in settings where
layers are not obliged to be reasonable in their decisions [37].
t has been widely applied in many fields including biology [38]
nd economy [39]. Recently, it was adopted in cloud and fog
omputing environments for various purposes [40,41]. Such a
ame focuses on the dynamics of strategy change and on which
mong these strategies can persist in these settings. The success
f a strategy is directly related to the other players’ selected
trategies. Hence, a strategy is evaluated by comparing it with
he other strategies within the same population. A strategy that
hows success will be replicated by other players as well. Once
he evolutionarily stable strategy is adopted by a certain popula-
ion, no player has intentions to deviate from it. Such a strategy
an survive invasions of relatively small invaders trying to sab-
tage it. Hence, it leads to stabilizing the population. In other
ords, let Pop denote the population adopting an evolutionarily

stable strategy X . Pop will not deviate from X if a small number of
invaders, adopting strategy Y , joined the population. In contrast,
the invaders will be forced to switch to X . Suppose that O(X, Y )
represents the outcome of an individual choosing strategy X
facing another one with strategy Y . X is stable if it represents a
strict Nash-Equilibrium ([O(X, X)] > [O(X, Y )]), or if O(X, X) =
O(Y , X) and O(X, Y ) > O(Y , Y ). If any of these two applies, then
no player has the incentive to deviate from their current strategy,
even if the population gets invaded by a few mutants. Fig. 3
depicts the evolutionary mechanism. It shows that the population
will keep on changing until reaching the state where all players
are inheriting satisfactory strategy. The characteristics of such
an evolution are similar to the ones inherited by the Genetic
Algorithm [42].

4.2. Game characteristics

We present in this subsection the characteristics of the evo-
lutionary game model to reach the evolutionarily stable strategy.
The objective is to proceed from the initialization step to reach

the ‘End’ state. The main components of this game are (1) the
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layers, (2) strategy, and (3) utility. Below, we break down each
f these components and map them to our settings.

• Players: The players are the fog providers. Clearly, they are
the decision-makers.
• Strategy: A strategy is represented by a particular fog feder-

ation. In particular, a player adopting strategy i can be inter-
preted as the player allocating its resources in federation i.
• Utility: The utility is the player’s monetary payoff per 1 unit

of allocated resources in a certain federation.

Hence, the problem becomes finding the best formation of fog
federation that keeps all the fog providers satisfied with their
coalition. To reach such a formation, the fog providers will deviate
from their federations if they find a better payoff by joining
others. Successful federations are most likely to be joined at time
t+1 by unfortunate fog providers who are not satisfied with their
selected federation at time t . The term evolution refers to this
specific stage, i.e. the change that occurs from a state to another,
making the population n evolve into n + 1 where some of the
players change their strategy. To represent such an evolution,
we employ the replicator dynamics model that expresses the
evolutionary dynamics [43]. In particular, we assume that the set
x = x1, x2, . . . , xm serves as the vector of distribution of available
strategies within the targeted population. Intuitively, since all
strategies are included in the set x, we can conclude the equation
below:
m∑
i=1

xi = 1 (7)

The replicator dynamic’s general form is represented by ẋi and is
calculated as:

ẋi = xi [fi(x)− ν(x)] (8)

where fi(x) represents strategy i fitness function and ν(x) is the
population’s average fitness, which can be calculated from:

ν(x) =
m∑
j=1

xjfj(x) (9)

Mapped to our problem, the fitness function is the payoff of the
provider per unit of resources obtained from Eq. (2). The replica-
tor dynamics’ defined by Eq. (8) shows the percentage of payoff
increase for the individuals adopting a successful strategy. Once
ẋi = 0 is obtained, the evolutionarily stable strategy is reached.

4.3. Stable fog federation formation

To demonstrate our approach, we divide the process into 3
different stages: Initialization, Player Strategy, and Stability.

4.3.1. Initialization
To initialize the population, we employ the K-means clustering

technique. Such a technique follows the Expectation-
Maximization approach [44]. It consists of assigning data points
to their nearest cluster (i.e. Expectation). After that, the process
of recomputing the centroid for each cluster takes place (i.e. Max-
imization). Algorithm 1 shows how federations are initialized.
The algorithm takes the set of fog providers, represented by
P , and the desired number of federations K, and outputs the
federations with their members. In Lines 1–3, we define and ini-
tialize the variables. In Lines 4–7, we set K initial centroids with
random values. Then, we iterate on the fog providers and assign
the providers according to their nearest centroid. Afterward, we
recalculate the centroids. The recalculation function takes into
consideration all of the clustered providers to calculate the new
26
midpoint. Such steps are repeated until no more providers change
centroids (Lines 8–17). Finally, we initialize a federation for each
centroid and allocate the providers inside of them with respect
to their centroid (Lines 18–23).

Algorithm 1: Initial Clustering
Input: K, Pop
Output: F

1 F ← ∅;
2 Centroids← ∅;
3 terminate← 0;
4 while K > 0 do
5 C ← RandomPoint;
6 Centroids← Centroids ∪ C;
7 K← K− 1;
8 while terminate ̸= 1 do
9 terminate← 1;

10 forall p ∈ P do
11 C ← nearest_Centroid(p);
12 if p.centroid ̸= C then
13 p.centroid← C;
14 terminate← 0;

15 if terminate ̸= 1 then
16 forall C ∈ Centroids do
17 C ← recalculate(C);

18 forall C ∈ Centroids do
19 f ← ∅;
20 forall p ∈ P | p.centroid = C do
21 f ← f ∪ p;
22 F ← F ∪ f ;
23 return F;

Once clustering is done, we employ Algorithm 2 to assign
services to the provider’s servers, with respect to the profit ob-
tained, using a greedy allocation approach. The algorithm takes
the set of services and the set of the providers allocated within
federation fi (Afi and Pfi respectively) and outputs an allocation list

which has references to which services shall be deployed on
hich servers. After initializing the variables (Lines 1 and 2), we
valuate the performance of each server assigned to each service
nd store them inside the list (Lines 3–7). We order the list by
he profit of each assignment in descending order (Line 8). Then,
sing a greedy technique, we pick the best available server for
ach service by keeping the best fit in terms of value (Lines 9 and
0).

Algorithm 2: Services Deployment
Input: Afi , Pfi
Output: M

1 M← ∅;
2 value← 0;
3 forall al ∈ Afi do
4 forall pj ∈ Pfi do
5 forall sk ∈ sk,pj do
6 value← P(al)× σal,fi − Csk ;
7 M←M ∪ [a : al, s : sk, v : value];

8 Order M by v descending;
9 forall mk ∈M do

10 removeAll ml from M|ml.s = mk.s,ml.a ̸= mk.a;

11 return M;
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.3.2. Player strategy
A player may reflect on its current strategy (i.e. federation) and

ecide that it might be better for him to switch to another. To
mitate such an act, we devise a decentralized algorithm, that can
e executed by the fog provider, to decide on which federation to
oin according to their preferences. Algorithm 3 shows how a fog
rovider may interact according to the evaluation of the available
ederations. The algorithm takes as arguments the fog provider’s
urrent federation fi, the set of federations F , and the current
vector of distribution of available strategies x. The output of the
algorithm is the provider’s preferred federation at the current
time. Lines 1–6 consists of initializing the parameters. At Lines
7 and 8, the provider calculates the average utility by summing
up all federations utilities with regards to the percentage of
the population adopting them. At Line 9, if the player notices
that they are not getting at least the average utility in terms
of value, compared to all other strategies being played, then
they consider switching into a more profitable federation. At Line
10, the player filters the federations, such that only the more
profitable are being kept. After that, these federations get stored
inside F ′ after being sorted in descending order according to the
player’s preferences. Lines 11–17 presents how the player sets
his next strategy. Finally, the player selects his preferred strategy,
according to how preferable a strategy with respect to the others
is. It is worth mentioning that we imitate the player’s behavior in
terms of preferences and with the presence of slight randomness.

Algorithm 3: Player Preference
Input: fi, F , x
Output: f

1 α← 0;
2 r ← random(0, 1);
3 f ← fi;
4 ν(x)← 0;
5 F ′ ← ∅;
6 x′ ← ∅;
7 forall fj ∈ F do
8 ν(x)← ν(x)+ xj × utility(fj|F );
9 if ν(x) > utility(fi|F ) then

10 F ′ ← sort(F |fj ∈ F , utility(fj|F ) > ν(x);
11 forall fj ∈ F ′ do
12 x′ ← x′ ∪ xj(ν − utility(fj|F ));
13 forall fj ∈ F ′ do
14 α←

xj∑
xk∈x′(xk)

;
15 if r < α then
16 f ← fj;
17 break;

18 return f ;

4.3.3. Discussion
Evolutionary games are time-aware in the sense that the pop-

lation is studied and evaluated over time. After setting the
nitial formation at time t , providers will start acting as ratio-
nal beings for seeking better federations. To further imitate the
dynamicity of such a non-cooperative game and the irrationality
of the providers, players are allowed to change strategies at any
particular time repetitively until they are satisfied, i.e. they do not
have incentives anymore to break from their current federation.
Having all players executing the decentralized algorithm over
time will result in solving ẋi = 0 for all xi ∈ x. In other words, it
will lead to a state where all the utilities are equal or similar to
the average. Thus, any deviation attempt from that state will lead
back to it again, as it represents the evolutionarily stable strategy.
27
Table 3
Available fog provider.
Fog provider Number of fog nodes Latitude Longitude

A 3 10 10
B 4 12 11
C 2 13 9
D 4 11 13
E 1 1 3
F 2 3 3
G 4 7 13
H 6 6 12
I 2 2 3
J 2 2 4

Table 4
Fog federations using K-means.
Federation Fog provider

f1 A B C D
f2 E F I J
f3 G H

Table 5
Application service providers.
ASP # Agreed price Chosen federation

1 15 $/h f1
2 5 $/h f1
3 20 $/h f2
4 30 $/h f2
5 10 $/h f3
6 20 $/h f3

The main advantage of an evolutionary non-cooperative game
over classical cooperative and non-cooperative games is that the
former survives mutant strategies invasions by shifting the pop-
ulation towards equilibrium [38]. There is indeed an assumption
of players cooperating together to increase the coalitions’ payoff
in cooperative games (e.g. [45,46]). Such kind of games impose
sequential strategies where steps and events happen one at a
time to reach equilibrium. In contrast, players engage individually
in order to increase their own payoff against the strategies of
other players in non-cooperative games. Nonetheless, both types
do not consider mutant strategies invasions and neglect outside
circumstances that may force some players to deviate from their
current strategies. In our problem, we consider a vast number
of players (i.e. fog service providers) and plenty of strategies
(i.e. fog federations) that are joinable at any time by any of
these players. Thus, in order to avoid drifts from the desired
stable state and to maintain equilibrium in the QoS, we adopt
an evolutionary game theoretical model for replicating successful
strategies among players.

5. Numerical example

In this section, we evaluate the proposed scheme in terms
of forming stable fog federations. We consider a set of 10 fog
providers with different locations and different numbers of par-
ticipating nodes as presented in Table 3. We assume that all fog
nodes are equal in terms of computing power and total cost (5000
MIPS and 0.5$/h respectively). By applying the initial clustering
technique, defined via Algorithm 1, we group up neighboring fog
providers together. By setting K to 3, we get the federations given
in Table 4.

Our solution grouped up providers A, B, C, and D into the first
federation, providers E, F, I, and J into the second federation, and
the remaining providers (G and H) are grouped into the third
federation. Table 5 represents the ASPs and the federations they

have chosen to request computing resources from.
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able 6
og providers’ utility and payoff.
Fog provider Federation Utility Payoff ($/h)

A f1 0.0002 8.5
B f1 0.0002 11.33
C f1 0.0002 5.67
D f1 0.0002 11.33
E f2 0.0013 2.83
F f2 0.0013 5.67
G f3 0.0005 11.33
H f3 0.0005 17
I f2 0.0013 5.67
J f2 0.0013 5.67

Then the payoff is distributed based on to Eqs. (2) and (4). We
et σ is equal to 1. Hence, the utility of federation f1 is computed
s follows:

(f1) =
1

13× 5000
× ((15+ 5)× 1)−

(3× 0.5+ 4× 0.5+ 2× 0.5+ 4× 0.5)
= 0.0002

whereas the payoff of the fog providers in exchange to their fog
nodes allocated in federation f1 would be given as:

R(A) = 3× 5000× U(f1) = 3.12$
R(B) = 4× 5000× U(f1) = 4.155$
R(C) = 2× 5000× U(f1) = 2.07$
R(D) = 4× 5000× U(f1) = 4.155$

The utility of federation f2 is computed the same way:

U(f2) =
1

7× 5000
× ((20+ 30)× 1)−

(1× 0.5+ 2× 0.5+ 2× 0.5+ 2× 0.5)
= 0.0013

and the payoff of federation f2’s members are:

R(E) = 1× 5000× U(f2) = 6.642$
R(F ) = 2× 5000× U(f2) = 13.286$
R(I) = 2× 5000× U(f2) = 13.286$
R(J) = 2× 5000× U(f2) = 13.286$

Likewise, federation f3’s utility and its members’ payoff are cal-
culated as:

U(f3) =
1

10× 5000
× ((10+ 20)× 1)−

(4× 0.5+ 6× 0.5)
= 0.0005

R(G) = 4× 5000× U(f3) = 10$

R(H) = 6× 5000× U(f3) = 15$
Table 6 summarizes the aforementioned calculations. We no-

tice that some of the providers would not be satisfied, thus
starting to deviate from their current federations. For instance,
providers B and G are both having the same number of fog nodes
and specs. However, due to G’s allocation in f3, it is getting an
ourly payoff of more than 240% of what B is acquiring from f1.
ence, provider B might get tempted to break from f1 and join

another federation for the sake of improving its payoff. Algorithm
3 reflects such behavior by solving the replicator dynamic’s ẋi =
0 in order to obtain a satisfactory solution (i.e. fog federations
formation) for all fog providers. Since the algorithm is time aware
and executed in a decentralized manner, provider B may execute
28
Table 7
Fog providers’ utility and payoff after convergence.
Fog Provider Federation Utility Payoff ($/h)

A f2 0.00056 3.12
B f1 0.00056 4.155
C f1 0.00056 2.07
D f2 0.00056 4.155
E f3 0.00056 6.642
F f2 0.00056 13.286
G f3 0.00056 10
H f2 0.00056 15
I f3 0.00056 13.286
J f3 0.00056 13.286

the algorithm to select the preferred federation at time t by B
calculating first ν(x):

ν(x) = 0.0002×
13
30
+ 0.0013×

7
30
+ 0.0005×

10
30
= 0.00055

Afterwards, it compares its utility with ν(x). If it does not meet
the average utility, then it starts seeking other federations having
a utility higher than ν(x). In this example, the only available
federation that meets such a condition is f2. So provider B should
consider f2 as the next strategy to adapt at time t + 1. After
that, all the utilities for the federations affected by such a move
(i.e. having B switching from f1 to f2) are recalculated as the
formation becomes different from what it was at time t . The same
process repeats until the algorithm returns the same federation
which is represented in Table 7. This distribution of resources
among federations would remain stable and cannot be sabotaged
by invaders, since the algorithm will lead back to the same (or
to a similar) distribution. Thus, the QoS will remain stable for the
clients.

6. Experimental evaluation

6.1. Experimental setup

The simulation has been conducted using Matlab R2019a on
a Windows 10 equipped with Intel Core i7-9700F and 32 GB of
RAMs. We used EUA Datasets,3 which have data collected from
IoT and Edge devices. We assigned random transmission delays
on the links and generated 40 services. The minimum demanded
response time by the services varies from 250 to 350 ms. Each IoT
device ui has a set of various services as mentioned in Section 3,
and a request rate per second (0 ≤ rr

sj
di
≤ 1) for them. Each

request needs processing of [800–1200] million instructions to
acquire a result. We limit the number of fog provider to 100
and IoT devices to 600. Each provider has [1–3] available servers,
each with a processing power of [4000–6000] MIPS. Finally, we
consider K = 10 after applying the Elbow method on evaluating
the fittest number of federations, according to the provider’s
distribution.

6.2. Results and discussion

In this section, we evaluate our evolutionary approach and
the proposed Algorithms in terms of stability, response time,
availability, player utility and federation payoff. We compare our
evolutionary game to three different approaches: (1) the Genetic
approach, presented in [33], (2) the Hedonic approach, presented
in [45], due to their resemblance to our approach, and (3) a greedy
approach presented in Algorithm 4. This algorithm is similar to
Algorithm 3 in a way that it is also executed by each player
independently. However, it further pushes the fog providers to

3 https://github.com/swinedge/eua-dataset

https://github.com/swinedge/eua-dataset
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Algorithm 4: Greedy Player Preference
Input: fi, F
Output: f

1 α← 0;
2 r ← random(0, 1);
3 f ← fi;
4 f ′ ← fi;
5 ν ←−∞;
6 forall fj ∈ F do
7 if ν < utility(fj|F ) then
8 ν ← utility(fj|F );
9 f ′ ← fj

10 if r < α then
11 f ← f ′;
12 break;
13 return f ;

Fig. 4. Stability: evolutionary game approach.

lways reallocate their resources to the best available federation,
.e., the federation with the highest utility. For a fair comparison,
e assign the same initial solution to all approaches and each one
f them updates that solution using its own mechanism.
Figs. 4–7 depict the utilities of federations when the formation

s maintained by the Evolutionary, Greedy, Genetic, and Hedonic
pproaches, respectively. The X-axis represents the time-line and
he Y -axis represents the utility of the strategy. We notice that
hen x < 14, the utilities of the federations were not stable
t all. However, the federations converge at x = 14 when the
volutionary approach is used. This is due to the stability mecha-
ism implanted in Algorithm 3 where the population realizes the
volutionarily stable strategy. On the other hand, the population
ould not stabilize at all when relying on the other reallocation
pproaches and the variance of the utilities remained high for the
irst 40 h.

The total payoff of all the federations is presented in Fig. 8
here the Y -axis represents the payoff in terms of USD. Accord-

ng to the simulation, the evolutionary approach is able to always
utperform the benchmarked models and maintain a higher pay-
ff that stabilizes at x = 14, whereas the Greedy, Genetic, and
edonic approaches are suffering from a lack of resources in some
ederations, which leads to having some non-deployed services
nd reduction in the payoff.
29
Fig. 5. Stability: greedy approach.

Fig. 6. Stability: genetic approach.

Fig. 7. Stability: hedonic approach.
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Fig. 8. Total federations’ payoff.

Fig. 9. Response time of requests.

Fig. 10. Availability of requests.
30
Finally, we compare the performance of forming the fog fed-
erations using the Evolutionary, Greedy, Genetic, and Hedonic
approaches in terms of services’ response time and availability in
Figs. 9 and 10, respectively. While the X-axis remains the time-
line for both figures, the Y -axis represents the response time
in milliseconds for Fig. 9, and the percentage of availability for
Fig. 10. All approaches are able to decrease the response time and
increase the availability from the initial formation. However, the
evolutionary game outperforms the other approaches and stabi-
lizes the services at full availability and a lower response time due
to the stability mechanism reached at x = 14, whereas the other
approaches still suffer from the lack of a satisfactory strategy that
pleases the participants and reduces their obligations to deviate
from their federations.

7. Conclusion

Fog federation is a concept worth exploring since it helps
to increase the computational capabilities of the fog providers
and can provide improved QoS for real-time applications. On the
other hand, federations may suffer from instabilities due to the
providers’ dynamicity that may lead some providers to leave their
coalitions and join others that are more profitable. In this paper,
we devised an evolutionary model to stabilize the federations. We
modeled the non-cooperative scheme as an evolutionary game
and advanced a decentralized model that inherits the settings of
the replicator dynamics in order to reach an evolutionary stable
strategy. The numerical results show how the formation process
converges to a stable state which improves the payoff and QoS in
terms of services’ availability and response-time.
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