
 Lebanese American University Repository (LAUR)

Post‐print version/Author Accepted Manuscript

Publication metadata

Title: New XACML‐AspectBPEL approach for composite web services security

Author(s): Sara Ayoubi, Azzam Mourad, Hadi Otrok, Ahmad Shahin

Journal: International Journal of Web and Grid Services

DOI/Link: https://doi.org/10.1504/IJWGS.2013.054109

How to cite this post‐print from LAUR:

Ayoubi, S., Mourad, A., Otrok, H., & Shahin, A. (2013). New XACML‐AspectBPEL approach for

composite web services security. International Journal of Web and Grid Services, DOI, 10.1504/

IJWGS.2013.054109, http://hdl.handle.net/10725/2678

 Year 2013

This Open Access post‐print is licensed under a Creative Commons Attribution‐Non Commercial‐No Derivatives

(CC‐BY‐NC‐ND 4.0)

This paper is posted at LAU Repository

For more information, please contact: archives@lau.edu.lb

 Int. J. Web and Grid Services, Vol. X, No. Y, XXXX

 Copyright © 200X Inderscience Enterprises Ltd.

New XACML-AspectBPEL approach for composite
web services security

Sara Ayoubi and Azzam Mourad*
Department of Computer Science and Mathematics,
Lebanese American University, Lebanon
Email: sara.ayoubi@lau.edu.lb
Email: azzam.mourad@lau.edu.lb
*Corresponding author

Hadi Otrok
Department of Electrical and Computer Engineering,
Khalifa University of Science, Technology and Research, UAE
Email: hadi.otrok@kustar.ac.ae

Ahmad Shahin
CIS Department,
Lebanese University, Lebanon
Email: ashahin@ul.edu.lb

Abstract: Web services technology is the latest evolution in distributed
computing. With all of the advantages of web services, one of the main hurdles
remains security in composite web services. In this paper, we tackle this
problem through a new approach towards the integration of security into the
BPEL (Business Process Execution Language) process of composite web
services. Our approach allows specifying the XACML (eXtensible Access
Control Markup Language) policies that determine join points in a BPEL
process where security is needed. Subsequently, BPEL flows with the needed
security are generated into AspectBPEL security aspects to be weaved in the
aforementioned process. The main contributions of our approach are:
(a) describing dynamic security policies using a standard language XACML,
(b) generating automatically the AspectBPEL aspects of the XACML policies
and (c) separating the business and security concerns of composite web
services, hence developing and updating them separately at the BPEL side.

Keywords: web services security; XACML; BPEL; security; AOP; RBAC.

Reference to this paper should be made as follows: Ayoubi, S., Mourad, A.,
Otrok, H. and Shahin, A. (xxxx) ‘New XACML-AspectBPEL approach for
composite web services security’, Int. J. Web and Grid Services, Vol. x, No. x,
pp.xxx–xxx.

Biographical notes: Sara Ayoubi holds an MSc in Computer Science from the
Lebanese American University (LAU). She also holds a bachelor degree in
Computer Science from the Lebanese University. The topics of her research
activities are security engineering, web services security, security policies and
cloud computing.

 S. Ayoubi et al.

Azzam Mourad is an Assistant Professor in the Department of Computer
Science and Mathematics at the Lebanese American University (LAU). He
holds PhD degree in Electrical and Computer Engineering from Concordia
University, Canada and MSc degree in Computer Science from Laval
University, Canada. The main topics of his current research activities are web
services security, web services engineering, aspect-oriented programming, ad-
hoc network security, information security, software security and security
engineering. He is currently serving as program chair, TPC member and/or
reviewers of several international conferences and journals. In the past, he
served as Postdoctoral fellow at Concordia University.

Hadi Otrok is an Assistant Professor in the Department of Computer Engineering
at Khalifa University. He received his PhD in ECE from Concordia University,
Montreal, Canada. His research interests are mainly on network and computer
security. He has interest in resources management in virtual private networks
and wireless networks. His PhD thesis is ‘Intrusion Detection System (IDS)
using Game Theory and Mechanism Design’. Before joining Khalifa
University, he was holding a postdoctoral position at the École de technologie
supérieure. He is serving as a technical programme committee member for
different international conferences and regular reviewer for several journals.

Ahmad Shahin has a PhD in Computer Science from La Rochelle University –
France. He has worked on Doppler Color Aliasing Correction with the
Cardiology Center of Poitiers Hospital from 1994 to 1998. Since 1999, he is
lecturing at the Lebanese University (LU). Currently, he is part of the
Laboratory of Mathematics and their Applications of LU. For several years, he
was the Head of the CIS Department at LU. His research focus on image
processing and data compression, identification using biometrics, and web
services. He is the Chairman of the IT Association in Lebanon and IEEE member.

1 Introduction

Web Services are the latest evolution in distributed computing. This technology allows
access to services over a network through a combination of Extensible Markup Language
(XML), Web Service Description Language (WSDL), Simple Object Access Protocol
(SOAP) and Universal Description, Discovery and Integration (UDDI). While it may
seem very similar to client/server applications, web services do not offer a GUI to the
client and its functionality focuses on sending and processing data in a peer-to-peer
fashion. It has gained a lot of popularity for being both platform and language independent.
In addition, it offers an ideal framework for service and data exchange between partners.
With all of the advantages of web services, one of the main hurdles remains security.

In this regards, several approaches were proposed to ensure security for web services,
such as XACML for access control, SAML for authentication and WS-Security that offers
various encryption and dynamic authentication and access control features for web services
(Lockhart, 2008; Moses, 2011; Atkinson, 2006). However, these approaches focus on
embedding security (e.g. tokens, encryption, keys etc.) in the SOAP message header of
each web service. This may cause conflicts among security policies, redundancy of security
measures, and imposes an enormous execution overhead in a process that orchestrates
between multiple web services. BPEL is one example of a language that provides
orchestration between several web services that are referred to as “partners”. In the
current form of BPEL use, it is only given the responsibility of business level
orchestration, while security is left to each individual web service to deal with when

 New XACML-AspectBPEL approach

invoked by a user. When a client invokes a BPEL process, this latter invokes on his
behalf every web service in the process. Thus, the aforementioned problems related to
conflicts and redundancy are still valid here because security measures (e.g.
authentication, access control, credentials verification, etc.) of the same user will be
executed at each web service.

In this paper, we address the aforementioned problems and introduce a new approach
for composite web services security. It aims to eliminate conflicts among policies and
reduce the overhead by verifying the credentials of users at the BPEL side. Our approach
is based on a synergy between XACM, AOP and BPEL, and built on top of our
AspectBPEL language (Mourad et al., 2012). XACML offers the capability of describing
the security policies required for a system, while AOP allows specifying the security
concerns in separate components called aspects. A BPEL trust enforcer ensures the
application of the security policies at the BPEL side. The main contributions of our
approach, in addition to the aforementioned advantages are:(1) describing the security
policies using a standard policy language (XACML), (2) generating BPEL aspects
conformed to XACML policies, (3) separating the business and security concerns of
composite web services, and hence developing them separately, (4) allowing the
modification of web services composition at run time to integrate, remove and/or update
security mechanisms and (5) providing modularity for modeling security cross-cutting
concerns between web services.

To demonstrate the feasibility of our proposition, we have developed a Flight
Reservation System (FS) that is composed of several web services. A RBAC (Role Based
Access Control) model for the flight reservation system, which we called RBAC-FS, is
elaborated where its security requirements are specified using XACML. The trust
enforcer parses these policies and generates BPEL aspects that integrate the security
functionalities into the BPEL process. The XACML policies and their corresponding
aspects provide authentication and access control features to the flight reservation
system. Case studies and experimental results are presented to defend our propositions.

The rest of the paper is organised as follows. In Section 2, we discuss the related
work. Section 3 is devoted to the description of the flight reservation architecture. In
Section 4 we present our the XACML-AspectBPEL architecture. In Section 5, we
illustrate our approach’s design and implementation. In Section 6 we illustrate our
proposed approach. In Section 7 we show our experimental results. Finally, we give
some concluding remarks in Section 8. A demo video of the XACML-AspectBPEL
framework is available on: http://youtu.be/khzp-a0ey3I.

2 Related Work

In this section, we provide an overview on the related work in the area of Web services
security.

Security Assertion Markup Language (SAML) (Lockhart, 2008) proposed by OASIS
is an XML-based specification language used to specify security credentials, which are
expressed as assertions. It allows to manage secure between organisations, from basic
password authentication, to SSL and X. 509 certificates.A security token is delivered to
the requester after successful authentication. This security token allows granting certain
permissions to the requester. Oasis also proposed another standard language for access
control: The eXtensible Access Control Markup Language (WS-XACML) (Moses,
2011). WS-XACML is designed to define authorisation policies for subjects that are
specified using XML.

 S. Ayoubi et al.

In the line of standards in the area of web services security, IBM in collaboration
with Microsoft and Verisign proposed WS-Security (Atkinson, 2006). WS-Security is a
mean for using XML to encrypt and digitally sign SOAP messages. Another feature of
WS-Security is allowing exchanging security tokens for authentication and authorisation
of SOAP messages.

Hummer et al. (2011) introduced an integrated approach for identity and access
management (IAM) in a SOA Context. Their approach is based on the elaboration of a
domain specific language (DSL), to define an IAM policy that enforces role-based access
control security for SOAs. The main contribution of their work is specifying the RBAC
permission with regards to a certain context, and matching each context element to a WS-
BPEL scope element. This context element allows single-sign on by reusing the same
SAML assertion for each activity within a single scope. With every scope change, a new
SAML assertion is generated for the corresponding role and context. However, our
approach adopts an aspect oriented mechanism to weave security aspects in a WS-BPEL
at any WS-BPEL element, and is not restricted to a scope element. Also, our approach
offers the ability to dynamically update the WS-BPEL composition at run-time to adapt to
new security requirements and separation of concerns between security and business logic.

X-RBAC (Bhatti, 2003) is an XML-based RBAC policy specification framework for
enforcing access control in dynamic XML-based Web services. The specification uses
representations of users, roles and permissions. The two main components of the
proposed framework are: the XML and the RBAC processors. The XML processor is
implemented in Java using Java API for XML Processing (JAXP). Some modules have
the duty to get the DOM instance of parsed XML documents and forward them to the
RBAC Processor. The RBAC module is responsible for administration and enforcement
of the policy according to the supplied policy information.

The Business Process Constraint Language (Paci et al., 2008) was introduced by Paci
et al. to allow the specification of authorisation policies and constraints for WS-BPEL
business processes. Ardagna et al. (2006) proposed a design of a Web service
architecture for enforcing access control policies. They also provided an example of
implementation based on the WS-Policy (Schlimmer, 2004; Nolan, 2004) as access
control language. The main components of the proposed architecture are: Policy
Administration Point (PAP), Policy Evaluation Point (PEP) and Policy Decision Point
(PDP). The PAP module is a policy repository that provides an administrative interface
for inserting, updating, and deleting policies. The PEP module realises the enforcement
of the policies returned by the PAP module. The access request is granted if at least one
policy is satisfied; the access is denied otherwise. A PDP module is the interface between
the service and the enforcer module. It is responsible for taking final access control
decisions based on the input from the PEP module.

All of the aforementioned approaches target the security policies implementation,
deployment and/or verification at the Web services side. However, they do not address
any of the aforementioned problems that occur at the composite web service level(e.g.
dynamic adaptation, services interruption and performance). On the other hand, our
approach relies on enforcing the security policies at the composite web service and
reducing the amount of overhead imposed by standard approaches.

In the same line of research, Charfi and Mezimi (2004) introduced a tool called
AO4BPEL, which an aspect oriented extension for BPEL that offers modularity and
adaptability to workflow processes. The join points are represented by activities in the
BPEL process. Pointcuts are represented in the XPATH language and advices are the
BPEL activities to be added. This work has been extended in the Cooperative Aspect
Oriented Programming for Executable Business Processes (Co-AOP) tool, which aims at

 New XACML-AspectBPEL approach

making the aspects reusable (Di Francescomarino and Tonella, 2009). An aspect code is
developed for a specific BPEL process, which makes it difficult to reuse. Co-AOP
alleviates that challenge by introducing what is called the Explicit Join Points (EJP).
These EJPs allow the base code to be aware of the aspect interfaces, and hence improve
aspect reusability by decoupling base code and aspects. The aspects are initiated in the
base code and described in their advices code, which forces the communication to be
parameterised between both the base and aspects codes. AO4BPEL offers the BPEL
process the ability to adapt to future changes in the BPEL process. However, AO4BPEL
has few limitations. First, it requires the use of a special orchestration engine to manage
the BPEL process, which makes it incompatible with the major adopted BPEL
development environments such as Eclipse, NetBeans, etc. Second, their approach
induces some performance overhead since it performs a check on each activity in the
process to determine whether or not their aspect code is associated with it. On the other
hand, our approach proposes a framework that is fully operational on any BPEL process
regardless of the adopted development environment. Moreover, our approach reduces
enormously the overhead since it is based on intercepting only selective join points, i.e.,
only those, which are associated with the aspect code.

3 Access control policy specification for the fight system

In this section, we describe the architecture of the flight system BPEL process and its
partner web services. Figure 1 explores the interactions between the users, the BPEL
process of the flight system, and the web services. Our Flight System is mainly
composed of three separate web services, a BPEL process and a graphical user interface.

Figure 1 FS architecture (see online version for colours)

First, the financial data service allows the user to request the revenues and expenses of
the flight agency for a given month. Second, the flight inquiry service returns a list of the
available flights including the time and date of the departure and arrival, the airline, the
number of available seats and ticket prices. The employee information service allows the
user to view information about the flight system staff by ID. This information includes
the employee’s full name, phone number, email address, post and office number. Finally,
the make reservation service enables the user to reserve a seat on a certain flight.

 S. Ayoubi et al.

Figure 2 illustrates a part of the flight system process. For space restriction, the figure
only explores one service invoke. We call this web service AnyFSWebService. The
process is invoked when a user requests one of the services offered by the FS. The
process begins by assigning the user’s input to the FlightService request message, then
invokes the requested service and returns the needed info. Finally, the service’s response
message is forwarded to the client. Each time a user wishes to access one of the flight
system services, his credentials are passed to each web service catering his request, in
order to authenticate and authorise the user.

Figure 2 FS BPEL process (see online version for colours)

The access control in our flight System is role-based and consists of four different roles.
We will refer to it as RBAC-FS. The highest role is the leader which has access to all the
available services. The supervisor and manager have less access rights than the leader
but more access rights than the staff members. The staff role has the least access
rights. Figure 3 illustrates the role hierarchy of the flight system access control.
Listings 1 and 2 (included in Section 6 for paper readability) present the XACML
specification of the corresponding RBAC-FS.

Figure 3 RBAC-FS role hierarchy

 New XACML-AspectBPEL approach

4 XACML-AspectBPEL architecture

Security is one of the software aspects that are very important to deal with. Generally,
developers describe in ad-hoc manner the required security rules and integrate them
directly in their code. Moreover, they do not separate between security and business logic
code. This means that any change in the security strategy has to be done on the
application code, which can have an impact on the business logic of web services.
XACML and AOP contribute to solve these issues by specifying the security policies in
XML-based documents, then embedding them in aspects. Aspects allow defining and
integrating security objects, methods and events within application, which make them
interesting solutions for many security issues. Many contributions (Shah, 2003; DeWin,
2004; Bodkin, 2004; Huang et al., 2004; Pavlich-Mariscal, 2007; Fuentes and Sanchez,
2006; Evermann, 2007; Kiczales, 2001; Kiczales et al., 1997; Slowikowski and Zielinski,
2003; Sun et al., 2009; Wu-Lee and Hwant, 2010) have proven the usefulness of AOP for
integrating security features into software. Moreover, previous approaches (Moses, 2011;
Atkinson, 2006; Lockhart, 2008) explored the usefulness and efficiency of specifying
security policies in standard languages like XACML. Using such languages also enforce
the concept of separation of concerns, which is one of the main advantages of AOP. The
main objective of AOP is to have a separation between cross-cutting concerns. This is
achieved through the definition of aspects. Each aspect is a separate module in which
pointcuts are defined. A pointcut identifies one or more join points. A join point
identifies one or many flow points in a program (in our case a program is a BPEL
process). At these points, some advices will be executed. An advice contains some code
that can alter the process behavior at a certain flow point. The integration of aspects
within the application code is called weaving and is performed through one of the
weaving technologies (e.g., AspectJ; Kiczales, 2001).

Our approach is based on a synergy between XACM, AOP and BPEL, and built on
top of our AspectBPEL language (Mourad et al., 2012). XACML (Moses, 2011), in
addition to other standard languages (Lockhart, 2008; Atkinson, 2006), are very useful
for the organised description of complex and composed security policies. They allow
avoiding the ad-hoc description of security rules and specifying them in XML-based
document. The XACML infrastructure as depicted by the Oasis standard consists of
4 components that can be distributed over the network as web services themselves:

 Policy Administration Point (PAP): Stores XACML Access Control Policies

 Policy Information Point (PIP): Hosts attributes about users and services

 Policy Decision Point (PDP): Decides about granting and denying access to a
resource

 Policy Enforcement Point (PEP): Enforces a PDP’s access decision and grants or
deny physical access.

To better illustrate the XACML infrastructure and the way these 4 components work
together to provide authentication and access control security to web services, consider
Figure 4.

 S. Ayoubi et al.

Figure 4 XACML infrastructure (see online version for colours)

In Figure 4, a user wants to access one of the services offered by the FS. As we have
previously mentioned, this system is composed of 4 separate web services. When the user
wants to access one of these services, the access request is directed to this web service’s
PEP. The PEP accesses the PIP that stores information about the user in order to
authenticate him. Subsequently, the PIP returns a SAML token with the corresponding
authentication response. Next, the PEP accesses the PDP in order to retrieve the user’s
access rights. The PDP invokes the PAP that stores the XACML policies to return the
policy of the given resource and the PIP to retrieve the SAML token. With the SAML
token and the XACML policy, the PDP returns to the PEP whether this user is granted or
denied access to the requested web service. Finally, the PEP either directs the access
request to the web service or returns to the application with a response that the user has
been denied access to the requested resource.

The motivation behind the need for a composite web services security is to replace
the monopolisation of web services security by placing it at the BPEL side. This shift
will reduce the overhead imposed by restricting security checks at individual invoke
activities. In its current form, every web service invoke in the BPEL process, goes
through the PEP, PIP, PDP and PAP of this corresponding service. This causes a lot
of overhead and dramatically reduces the performance of the BPEL process, as
demonstrated by our performance analysis in Section 7. For this purpose, we have
accommodated our approach with a trust enforcer, where each partner web service can
securely place their security policies and allow the process to manage security at its side.
In addition, we have consolidated our approach with a systematic mechanism for
identifying selective join points where security checks need to be integrated, rather than a
dogmatic call for security at each invoke activity.

To better illustrate the importance of composite web services security let’s consider
our Flight System illustrated in Figure 1 and let’s consider a process where a leader
would want to do a check on the monthly sales then check the flight inquiries to make
sure that the sales match with the amount of tickets sold for a given month. In this case,
the flight reservation process will consist of a sequence of two web services invoke: First,
the process will invoke the financial data web service to retrieve the sales figures of the
current month and then it will invoke the flight inquires web service to retrieve the

 New XACML-AspectBPEL approach

amount of tickets sold. The retrieved information will either be used by the leader to
manually ensure that the sales figures match the amount of tickets sold, or it will be
directed to an automated function to do the required check.

As the process invokes the financial data web service, it will pass through the
service’s PEP to check whether this user has the right to access the requested data. Once
the request for access is identified, the process flow will resume and another access to the
PEP of the flight inquires web service is needed to check whether that same user has
access to the requested resource. A closer look to this flow shows the overhead due to the
need of security checks at each web service invoke.

Our suggested approach is depicted in Figure 5 that consists of moving security from
the web service side to the BPEL side in case of composite web services. Each web
service will deploy its XACML policy at the trust enforcer’s PAP.

Figure 5 Approach architecture (see online version for colours)

The trust enforcer adopts an XACML infrastructure to enforce security at the BPEL
level. The trust enforcer through its access to the XACML policies will generate aspects
for selective join points in the BPEL process where security checks are needed. These
aspects are herein after referred to as AspectBPEL aspects. When the BPEL process
receives a request, it directs it to the trust enforcer that will trigger the chain of calls to
the 4 components of the XACML structure in Figure 5. As a result, it either grants the
user access to the requested service or returns an “access denied” message to the user.

Selective join points are the locations identified in the BPEL process where security
checks are required. These locations are found by parsing the XACML policies and
matching resources and actions in these policies to “invoke” activities in the BPEL
Process. The advantage of this approach is to avoid security checks on “invoke” activities
where security isn’t needed, and instead immediately direct the request to the
corresponding service.

 S. Ayoubi et al.

To better illustrate the selection of join points consider the XACML policy presented
in Listing 1 and 2. The permission to get current month sales rule indicates that a leader
is allowed access to the FinancialDataWS to get the Current month sales. Since there is
specific authentication requirements imposed, this rule will be translated into an
AspectBPEL aspects that will be weaved accordingly before the “invoke” activity of the
financial data web service that calls the “GetMonthlySales” operation. On the other hand,
the Permission to get the login window does not require any authentication or access
control and thus this activity is not considered among the selective joint point and will be
processed directly.

It is important to note that our approach doesn’t omit security from the web service
side. When a web service becomes part of a composition (such as a BPEL process), our
framework would ensure proper security checks at the process side. However, each web
service will keep its individual XACML structure to serve requests from other clients that
are not directed through the BPEL process.

5 Approach design and implementation

In this section, we will describe the structure of our XACML-AspectBPEL platform
that is integrated at the trust enforcer side for identifying selective join points and
generating the corresponding security AspectBPEL aspects to be weaved at the BPEL
side. A demo video of the XACML-AspectBPEL framework is available on:
http://youtu.be/khzp-a0ey3I.

The structure of our XACML-AspectBPEL framework is illustrated in Figure 6

Figure 6 Approach schema (see online version for colours)

 New XACML-AspectBPEL approach

5.1 XACML-AspectBPEL generator

Our XACML parser is developed in Java based on the DOM parser for xml. It begins by
parsing all the resources identified and actions presented in the policy. Each action on a
resource is matched to an “invoke” activity in the BPEL process.

For each join point, an AspectBPEL aspect is generated. These aspects are referred to
as security checks and consist of passing information to the trust enforcer about the
action and resource the user wishes to access. If the user is granted access, the process
flow resumes normally, else it returns an error message to the user indicating that he was
denied access to the requested resource.

5.2 AspectBPEL weaver

In order to weave the generated AspectBPEL aspects into the specified BPEL process,
our AspectBPEL weaver begins by reading the join points which represents the name and
type of the activity where security checks will be inserted. Next, the weaver parses the
BPEL process to find the corresponding join points in the process. Once found, the
behavioral code will be inserted before, after or replace the join point respectively.

6 Illustration of the proposed approach

In this section, we present the implementation of the RBAC-FS model that illustrates all
the procedures and mechanisms described in our proposed approach for the systematic
enforcement of security at the process-level. In what follows, we will show the generated
XACML-AspectBPEL aspects (Listing 3) realising the aforementioned XACML policy
of the RBAC-FS model (Listings 1 and 2). The syntax and constructs of the AspectBPEL
language will be cited or included in the final version of the paper.

Listing 1 and Listing 2 outlines a summary of the XACML-based access control
policy for the flight reservation system. Normally, each web service has its own policy
file, but due to space limitation, we included in the listing all the roles and permissions of
the FS, but we only elaborate on the GetFlightInquiries (line 71 to line 98) and the
GetMonthlySales permissions (line 33 to line 60). The others are set in similar way. First,
the roles are defined. A general role (root of the hierarchy) is denoted by leader and has 2
sub-roles: manager and supervisor. The leader is given permission to perform any action
to any resource. The manager and supervisor roles have staff as a common sub-role and
are assigned respectively to PPS:manager:role and PPS:supervisor:role policies. The staff
role has PPS:staff:role as policy. Each of the permission policies defines the set of
permissions related to each role. For instance, the PPS:supervisor:role includes viewing
each staff’s tasks list.

Listing 3 illustrates an excerpt of the generated AspectBPEL aspects that realise the
XACML policy of Listing 1 and Listing 2. Due to space limitation, we will only show
the XACML-AspectBPEL aspects generated for one sequence flow of the entire BPEL
Process that we have already described in Section 4. The generated AspectBPEL aspects
shows two security checks that will be weaved before the “CurrentMonthSales” invoke
activity that calls the “GetCurrentMonthSales” operation of the financial data web
services, and before the “CurrMonthFlightInquiries” invoke activity that calls the
“GetCurrMonthFlightInquiries” of the flight inquiries web service. Each of these security

 S. Ayoubi et al.

AspectBPEL aspects consists of calling the trust enforcer, to check whether the current
user is allowed to access the requested operations. The trust enforcer returns a permit or
deny response, and the process resumes its work accordingly.

7 Discussion and experimental results

The proposed framework generates the AspectBPEL aspects in Listing 3 from the XACML
policy in Listing 1 and 2, then weaves them in the BPEL process of the Flight Reservation
System presented in Figure 2 to produce the secure BPEL process illustrated in Figure 7.

Figure 7 FS Secure BPEL process (see online version for colours)

 New XACML-AspectBPEL approach

Listing 1 Excerpt of XACML policy for FS-Part I

 S. Ayoubi et al.

Listing 2 Excerpt of XACML policy for FS-Part II

 New XACML-AspectBPEL approach

Listing 3 Excerpt of generated AspectBPEL aspect for access control

 S. Ayoubi et al.

The resulted BPEL process provides dynamic authentication and access control features
for the Flight Reservation system. The BPEL process begins by receiving the client’s
input and follows the process sequence flow. Once the process reaches an invoke
activity, it invokes the trust enforcer in order to determine the user’s access rights. If the
access is denied, the process replies with an “access denied” message to the client.
Otherwise, the process will proceed to invoke the flight reservation system web service
AnyFSWebservice and return to the client the requested resource.

Verifying the successful integration of the RBAC-FS security features in the original
BPEL code of the flight reservation system has been performed through extensive
testing. Additional efforts have been spent on verifying that the original functionalities
of the system have not been altered. Also several modifications have been applied to
the security policy and reflected dynamically in the corresponding BPEL aspects.
Consequently, the modification has been applied dynamically onto the BPEL process,
which demonstrates the feasibility and appropriateness of our propositions.

To better demonstrate the effectiveness of our approach we have also conducted a
performance analysis. This analysis allowed us to measure the variation in the execution
time between a BPEL process with security on the web service side and a BPEL process
with security on the process level.

Figure 8 shows the variation in the process’s runtime. The process’s execution
runtime has been measured upon the number of invokes that the BPEL process includes,
which reflects the number of participating Web services. The higher the number of
invokes are, the bigger and more complex the BPEL process becomes. This helps
demonstrate the scalability of our approach. The execution time has been measured using
the Visual Studio Profiling Tool TPTPEclipse. This tool allows us to read the runtime of
the process call.

Figure 8 Performance analysis (see online version for colours)

The process execution time chart shows two different lines: a process with security at the
web service side and a process with XACML-AspectBPEL security.

 New XACML-AspectBPEL approach

For the sake of the performance analysis, we built a BPEL process and augmented the
number of web services invoke at each run. In the case of security at the web service
side, we have developed for each web service an XACML policy and incorporated an
XACML infrastructure to ensure proper security as depicted in the policy. However, in
the case of security at the BPEL level, we removed the XACML components from the
web service side and placed it once at the process side, with all of the web service
policies at the PAP component.

Figure8 illustrates the following results:

 A BPEL process with security implemented at the Web Service level runs at 3225.33
msec for 6 web services invoke, and rises to around 8000 msec for 18 web services
invoke.

 A BPEL process with security implemented at the process level runs at 2817.42
msec for 6 web services invoke, and reaches 6521.56 msec when running a process
with 18 web services invoke.

These results clearly show that security at the process level considerably enhances the
runtime of the BPEL process. This performance analysis shows that the XACML-
AspectBPEL framework enhances the overall runtime of the BPEL process, since it
alleviate the overhead of sending the security verification at web service side and also
reduces unnecessary security checks.

8 Conclusion

A novel approach was proposed for the systematic enforcement of security at the process
level using a separate trust enforcer with an XACML infrastructure. Our proposition is
based on a synergy between XACML, AOP and a composition of web services. It
eliminates conflicts among policies and reduce the overhead by verifying the credentials
of users at the BPEL side.It also allows the separation between business and security
concerns of composite web services, and hence developing them separately. Moreover, it
permits dynamic activation of security and modification of the web services composition
at runtime. The experimental results demonstrate the feasibility and appropriateness of
our proposition. We also illustrated the dynamic integration, activation and modification
of access control features in the flight reservation system. Finally, we conducted a
thorough performance analysis to demonstrate the efficiency of our approach and its
scalability in long and complex processes.

Acknowledgements

This work is supported by the Lebanese American University(LAU) and CNRS, Lebanon.

 S. Ayoubi et al.

References

Ardagna, C.A., Damiani, E., De Capitani di Vimercati, S. and Samarati, P. (2006) ‘A web service
architecture for enforcing access control policies’, Electronic Notes Theoretical Computer
Science, Vol. 142, 2006.

Atkinson, B. (2006) Web services security (WS-Security). Available online at: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wss

Bhatti, R., Joshi, J., Bertino, E. and Ghafoor, A. (2003) ‘Access control in dynamic XML-based
web-services with X-RBAC’, Proceedings of the International Conference on Web Services
(ICWS 03), 2003.

Bodkin, R. (2004) ‘Enterprise security aspects’, Proceedings of the AOSD 04 Workshop on AOSD
Technology for Application-level Security (AOSD 04), 2004.

Charfi, A. and Mezini, M. (2004) ‘Aspect-oriented web service composition with AO4BPEL’,
ECOWS 04, 2004.

DeWin, B. (2004) Engineering Application Level Security through Aspect Oriented Software
Development, PhD Thesis, Katholieke Universiteit Leuven.

Di Francescomarino, C. and Tonella, P. (2009) ‘Cooperative aspect oriented programming for
executable business processes’, Proceedings of the the 2009 ICSE Workshop on Principles of
Engineering Service Oriented Systems, Vancouver, Canada.

Evermann, J. (2007) ‘A Meta-Level Specification and Profile for AspectJ in UML’, Journal of
Object Technology, Vol. 6, No. 7, pp.27–49.

Fuentes, L. and Sanchez, P. (2006) ‘Elaborating UML 2.0 Profiles for AO Design’, Proceedings of
the International Workshop on Aspect-Oriented Modeling, 2006.

Huang, M., Wang, C. and Zhang, L. (2004) ‘Toward a reusable and generic security aspect library’,
Proceedings of the AOSD 04 Workshop on AOSD Technology for Application level Security
(AOSD 04), 2004.

Hummer, W., Gaubatz, P., Strembeck, M., Zdun, U. and Dustdar, S. (2011) ‘An integrated
approach for identity and access management in a SOA context’, Proceedings of the 16th
ACM Symposium on Access control Models and Technologies (SACMAT 11), New York,
USA.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W.G. (2001) ‘An
overview of AspectJ’, Proceedings of the 15th European Conference on Object-Oriented
Programming (ECOOP 01), London, UK.

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J-M. and Irwin, J.
(1997) ‘Aspect-oriented programming’, in Aksit, M. and Matsuoka, S. (Eds): Proceedings of
the European Conference on Object-Oriented Programming, Springer-Verlag, Berlin,
Heidelberg, and New York.

Lockhart, B. (2008) OASIS Security Services TC (SAML). Available online at: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=security)

Moses, T. (2011) OASIS eXtensible Access Control Markup Language (XACML), OASIS Standard
2.0. Available online at: http://www.oasis-open.org/committees/xacml/

Mourad, A., Ayoubi, S., Yahyaoui, H. and Otrok, H. (2012) ‘A novel aspect-oriented BPEL
framework for the dynamic enforcement of web services security’, International Journal of
Web and Grid Services, Vol. 8, No. 4, pp.361–385.

Nolan, P. (2004) Understand WS-Policy processing, Technical report, IBM Corporation.

Paci, F., Bertino, E. and Crampton, J. (2008) ‘An Access-Control Framework for WS-BPEL’,
International Journal of Web Services Research, Vol. 5, No. 3, pp.20–43.

Pavlich-Mariscal, J., Michel, L. and Demurjian, S. (2007) ‘Enhancing UML to model custom
security aspects’, Proceedings of the 11th International Workshop on Aspect-Oriented
Modeling, 2007.

Schlimmer, J. (2004) Web Services Policy Framework (WS-Policy). Available online at:
http://www-128.ibm.com/developerworks/Webservices/library/specification/ws-polfram/

 New XACML-AspectBPEL approach

Shah, V. (2003) An Aspect-Oriented Security Assurance Solution, Technical Report AFRL-IF-RS-
TR-2003-254, Cigital Labs.

Slowikowski, P. and Zielinski, K. (2003) ‘Comparison study of aspect-oriented and container
managed security’, Proceedings of the ECCOP workshop on Analysis of Aspect-Oriented
Software, 2003.

Sun, M., Li, B. and Zhang, P. (2009) ‘Monitoring BPEL-Based Web Service Composition Using
AOP’, Proceedings of the 8th IEEE/ACIS International Conference on Computer and
Information Science, Washington, DC, USA.

Wu-Lee, C. and Hwang, G. (2010) ‘Dynamic policies for supporting quality of service in service-
oriented architecture’, Proceedings of the International Conference on Electronics and
Information Engineering, Washington, DC, USA.

Websites

Ken North Computing, XML and Web Services: Message Processing Vulnerabilities.
http://www.Webservicessummit.com/Articles/MessagingThreats.htm.

Terence Parr, ANTLR, http://www.antlr.org/.

The Eclipse Test and Performance Tools Platform, www.eclipse.org/tptp/.

The Visual Studio Profiling Tool, http://msdn.microsoft.com/en-us/library/bb385770.aspx.

View publication statsView publication stats

https://www.researchgate.net/publication/258222459

