
SOCA (2013) 7:217–230
DOI 10.1007/s11761-013-0127-5

ORIGINAL RESEARCH PAPER

XrML-RBLicensing approach adapted to the BPEL process
of composite web services

Hanine Tout · Azzam Mourad · Hadi Otrok

Received: 30 July 2012 / Revised: 25 December 2012 / Accepted: 4 January 2013 / Published online: 2 February 2013
© Springer-Verlag London 2013

Abstract Web service orchestration represents an open
and standards-based approach for connecting web services
together leading to higher level of business processes.
Business Process Execution Language (BPEL) engines are
designed to handle this orchestration. However, web service
compositions into BPEL suffer from several non-functional
requirements such as security. To address this problem, we
propose in this paper a novel approach that is based on a
harmony between the licensing concept offered by eXtensi-
ble rights Markup Language (XrML), aspect-oriented pro-
gramming (AOP), and web service compositions in BPEL.
Our proposed approach, based on XrML, offers the ability
to associate security licenses with activities offered by the
composite web services. It allows to automatically generate
BPEL aspects depending on the developed licenses, to sep-
arate between crosscutting concerns of the composed web
services, and provides an easy way to include and update
the non-functional requirements (e.g., security) into a BPEL
process. It offers also the ability to validate the licenses,
at runtime and without affecting the business logic of this
model. To evaluate our approach, we have developed an

This work is supported by the Lebanese American University (LAU),
CNRS Lebanon and Khalifa University of Science, Technology
& Research (KUSTAR) UAE.

Electronic supplementary material The online version of this
article (doi:10.1007/s11761-013-0127-5) contains supplementary
material, which is available to authorized users.

H. Tout · A. Mourad (B)
Department of Computer Science and Mathematics,
Lebanese American University, Beirut, Lebanon
e-mail: azzam.mourad@lau.edu.lb

H. Otrok
Department of ECE, Khalifa University of Science, Technology
& Research, Abu Dhabi, UAE

inventory control system (ICS) sample that is composed of
several web services. Case study and performance analysis
are presented to demonstrate its feasibility as well.

Keywords Web services · XrML · BPEL · Security ·
AOP · RBL

1 Introduction

Services and information flow form the essential assets as
well as the key to the growth and success for all businesses
today. However, we need to ensure that these resources held
on the system are secure especially when they are shared
between several participants in a business interaction such
as the case of a BPEL process that combines several web
services.

Seeing that the use of the internet continues to grow, web
services are assuming greater importance as the public face
of business not only by making business applications acces-
sible through the internet but also by providing a complete
structure for a business process allowing different applica-
tions to collaborate together in order to deliver their services.
Web services naturally have greater security risks than tradi-
tional applications; therefore, it is important for web services
to be fully protected against these risks [11]. Many people
using web services expect their confidential information to
stay secure. Furthermore, with this high level of dependency
upon the services provided by web services, it is essential
that they are protected from any type of security breaches
and threats. Hence, it is important to develop tools that meet
the need of the enforcement of security requirements such
as license verification, authenticity, authorization, and confi-
dentiality into web services.

123

http://dx.doi.org/10.1007/s11761-013-0127-5

218 SOCA (2013) 7:217–230

Usually, security requirements are embedded statically
into the design/code of the web services. Hence, a remarkable
problem arises. Using such mechanism, any modification
in the security measures requires an access to the design/-
code and an update of this latter. In this context, several
approaches have been proposed. They are more dynamic
since they are based on policy languages. The following
are instances of these languages: WS-Security [2], SAML
[14], XACML [15], and XrML [6]. The WS-Security sup-
ports message integrity and confidentiality offering the abil-
ity to exchange signed encrypted messages in a web services
environment. Security Assertion Markup Language (SAML)
and XACML provide mechanisms for authentication and
authorization in a similar environment. XrML is a licensing
language that defines rights, associated with digital content
and web services, within grants. These approaches can be
useful when the problem pertains on updating a single web
service.

Nevertheless, the problem remains at the BPEL process
level handling the web service compositions. Therefore, it
seems interesting to take advantage of the aforementioned
languages to be applied at the process level. In our approach,
we opted to adopt XrML that apt to meet the licensing
requirements of the composite web services within the BPEL
process. As a matter of fact, the current BPEL suffers from
certain shortcomings: for instance, lack of modularity for
modeling crosscutting concerns and non-support of runtime
modification of the composite web services. In other words,
the update, addition, or even removal of any partner web
service may require stopping the entire process, making the
needed updates into the web service(s), and then redeploy-
ing it. This leads to make all services unavailable during the
update process.

Moreover, by invoking the BPEL process, all the involved
partners (e.g., web services) get invoked. Hence, the security
measures such as license verification will be executed at each
web service call, that is, each invoke. This overhead of secu-
rity measures checking will obviously affect the performance
of the BPEL process.

We propose in this paper a new approach that aims to cope
with the aforementioned problems. It takes advantage from
the current XrML paradigm by adopting it into BPEL to cater
for the needs of web services licensing. Using XrML, enti-
ties will be able to define grants within licenses and associate
them with the offered activities. Our proposal exploits also
the AOP concept that is based on aspects to provide modu-
larity for modeling crosscutting concerns. It also offers the
ability to generate automatically some AspectBPEL secu-
rity aspects depending on the issued licenses. Built on top
of the current AOP technologies, AspectBPEL (a language
that we have developed in previous work) allows to describe
and specify security BPEL aspects. These aspects not only
provide modularity to describe separately security measures

but also identify some selective join points where these mea-
sures will get dynamically activated. In other words, rather
than being executed at each invoke, security features will be
activated only at the stated join points in the BPEL process.
Our approach provides as well a weaver that integrates the
generated AspectBPEL aspects into the BPEL process at run-
time.

The following are the main contributions of our approach:

1. Adopting XrML in BPEL which allows service providers
to link their services with security licenses.

2. Generating automatically the BPEL aspects depending
on the XrML licenses.

3. Separating between crosscutting concerns of the com-
posed web services.

4. Enhancing the performance of the web service composi-
tions by developing security and business logic into sep-
arate modules and centralizing the security at the BPEL
level.

5. Offering an easy way to include and update the non-
functional requirements such as security licenses into a
BPEL process, at runtime and without affecting its busi-
ness logic.

6. Allowing a real-time license validation at the BPEL
process level at any moment during its running time.

To validate the utility and the flexibility of our approach,
we have developed an inventory control system (ICS) that is
composed of several web services. We have also elaborated
a role-based license (RBL) model for the ICS and developed
the web services to implement such system where security
features will be enforced. Then, a BPEL process that handles
the orchestration between these web services has been devel-
oped. Afterward, using our parser, we have generated the
AspectBPEL aspects. The latter contains a call for the elabo-
rated XrML-License checker that provides the ICS with the
grants validation property depending on the XrML licenses.
Finally, in the developed framework, the generated aspects
have been dynamically weaved into the BPEL process at run-
time using the AspectBPEL weaver tool that we have devel-
oped in a previous work. Case studies as well as experimental
results are also presented to defend our proposal.

The remainder of this paper is organized as follows. In
Sect. 2, we discuss the related work. Section 3 is devoted
to the description of the inventory control system architec-
ture. In Sect. 4, we present the RBL-ICS model of the inven-
tory control system. Section 5 is elaborated to illustrate the
proposed approach. In Sect. 6, we present the elaborated
framework. In Sect. 7, we illustrate the implementation of
our proposal in a case study. In Sect. 8, we present the results
of the performance analysis that we did. Section 9 concludes
the paper.

123

SOCA (2013) 7:217–230 219

2 Related work

Recently, web services security has gained a lot of attention
especially in the area of research. Standards and research
papers have been proposed aiming to provide policies and
techniques that enforce web services security. In this con-
text, we explore the current standards for security policy
description, their advantages, and limitations as well. We
illustrate also different work that is related to the specifica-
tion of security policies, based on the licensing concept and
apt to be applied in the web services environment. Finally,
we discuss the objectives, advantages, and shortcomings of
the current initiatives related to the adoption of AOP in the
same environment.

SAML [14] is a product of the Security Services Technical
Committee of OASIS. It is an XML-based standard for com-
municating authentication and authorization data. It defines
how to specify security credentials, which are represented
as assertions. SAML can be used to manage secure sessions
between organizations and can leverage several mechanisms
such as basic password authentication, SSL and X. 509 cer-
tificates, etc. A security token is delivered to the requester
after successful authentication. This security token allows
granting certain permissions to the requester.

Proposed by IBM, Microsoft, and Verisign, WS-Security
[2] standard seeks to embed security within the SOAP mes-
sages. It addresses authentication, signatures, and encryption
concerns. WS-Security describes how to exchange security
tokens for authentication and authorization of SOAP mes-
sages. It is also a means for using XML to encrypt and digi-
tally sign SOAP messages.

WS-XACML [15] or Web Service eXtensible Access
Control Markup Language is an XML-based language to
specify and exchange access control policies. It is offered
by OASIS and designed to define authorization policies for
principals using XML.

X-RBAC is an XML-based RBAC policy specification
framework for enforcing access control in dynamic XML-
based web services. It is proposed by Bhatti et al. [3]. The
specification uses representations of users, roles, and permis-
sions. The two main components of the proposed framework
are the XML and the RBAC processors. The XML processor
is implemented in Java using Java API for XML Process-
ing (JAXP). Some modules have the duty to get the DOM
instance of parsed XML documents and forward them to
the RBAC Processor. The RBAC module is responsible for
administration and enforcement of the policy according to
the supplied policy information.

A web service architecture design for enforcing access
control policies has been proposed by Agostino et al. [1].
Their proposal provides also an example of implementation
based on the WS-Policy [16,19] as access control language.
The main components of the proposed architecture are Policy

Administration Point (PAP), Policy Evaluation Point (PEP),
and Policy Decision Point (PDP). The PAP module is a pol-
icy repository that provides an administrative interface for
inserting, updating, and deleting policies. The PEP module
realizes the enforcement of the policies returned by the PAP
module. The access request is granted if at least one policy
is satisfied; the access is denied otherwise. A PDP module is
the interface between the service and the enforcer module. It
is responsible for taking final access control decisions based
on the input from the PEP module.

The eXtensible rights Markup Language (XrML) [6] is
an XML-based specification grammar proposed by Content-
Guard. It offers the ability to specify and express grants
within licenses associated with digital content, services, or
any digital resource. It supports also service-centric models
such as web services. By providing a standard language that
is platform independent, it extends the usefulness of web
services for service providers.

RBAC-WS-BPEL, proposed by Paci et al. [17], is a frame-
work that offers the ability to define authorization policies
and constraints for WS-BPEL business processes. WS-BPEL
is a language for composing web services. To specify autho-
rization policies, the authors used XACML. They introduce
the Business Process Constraint Language (BPCL), which
can be used to specify authorization constraints. The users
are associated with roles as done in role-based access control
(RBAC) models.

The aforementioned approaches support our claim about
the need to have standard languages for the description
and specification of security measures. Although the pro-
posed solutions aim to enforce the web services secu-
rity, they cause a security measures verification overhead
at the web services side. Practically, they target the secu-
rity features implementation and verification at the web
services level. On the other hand, many security features
require run-time verification. For instance, license valida-
tion which may often be modified and updated. In this
context, when adopting one of the aforementioned solu-
tions, another problem appears in compound systems such
as BPEL process. Seeing that the latter is composed of
several web services, any modification in the license will
lead to stop the whole process during the update proce-
dure. Consequently, all the services will become unavail-
able. Our approach relies on the dynamic injection of AOP
aspects (representing the license grants validation) into BPEL
processes and centralization of security controls at that
level. This allows an easy update of the security mea-
sures when needed, without affecting the business logic
of the BPEL process. In the sequel, we present the initia-
tives related to the adoption of AOP in the web services
context.

AO4BPEL language has been introduced in [5] in order to
improve the modularity and the dynamic adaptation of web

123

220 SOCA (2013) 7:217–230

services composition. It extends the process-oriented com-
position language “BPEL” with an aspect-oriented mecha-
nism in which aspects can be weaved into the composition
process at runtime. In AO4BPEL: Join points are mapped to
BPEL activities, Xpath language is used to represent point
cuts and several types of advices (For instances, before, after
and around) are supported. Chiara Di Francescomarino and
Paolo Tonella [6] presented Co-AOP (Cooperative aspect ori-
ented programming) for Executable Business Processes. It is
an extension to AO4BPEL that aims to make the aspects
Reusable. Co-AOP declares the explicit join points (EJPs)
for BPEL processes. As an improvement to AO4BPEL, EJPs
allow the base code to be aware of the aspect interfaces so
that they enhance the aspect reusability by decoupling base
code and aspects. They also force the communication to be
parameterized between both the based and aspects code. The
AO4BPEL offered the BPEL process the ability to modu-
larize the web services composition as well as to adapt to
future changes in such composition. However, their approach
neglects the security aspect of BPEL and does not address
the use of policy specification using standard languages.

3 BPEL process architecture of the inventory control
system web services

This section explores the architecture of the inventory control
system web services and their corresponding BPEL process.

3.1 Inventory control system overview

Inventory control system, a common web application, is
considered as case study to illustrate the feasibility of our
approach. Figure 1 depicts the interactions between the user
and the inventory control system including the correspond-
ing BPEL process and its composition of web services. As
illustrated in the figure, the security features are deployed on
the web services side (i.e., not in the BPEL process). This
definitely assures that any change in these security features
requires a modification in the corresponding web service.

Our inventory control system is consisted of a BPEL
process, its composition of mainly four web services, and
a graphical user interface that contains in the main page all
services offered by our system: for instance, order new prod-
ucts from different suppliers, place an order, get stock reports,
search for any sale invoice, generate invoice voucher, and
send reminders for due bills. The first offered service allows
the user to order new products from suppliers while the sec-
ond lets the user purchase desired products encompassing
the choice of shipment request. The get stock report allows
the user to check the availability of the items. The user has
also the ability to look for sales transactions and to generate
invoice voucher for customers as well as to send reminders

Fig. 1 ICS architecture

Fig. 2 ICS BPEL process

for due bills. The inventory control system enforces security
requirements by invoking security services such as authen-
tication and grants validation, respectively, with the user
request to access any of the offered services. Namely, when
a user demands one of the inventory control system services,
the system fetches the database record where the ID and the
password of each user are stored besides its personal infor-
mation and ensures that he/she is a valid user.

3.2 BPEL process architecture

Figure 2 depicts a part of the architecture of the BPEL process
of our inventory control system.

For space restriction, the figure only explores one service
invoked from the BPEL process. We called this service Any-
ICWSService. It is offered by one of the ICS Web services.
This latter may or may not run with security on the side. Once
the user requests one of the services offered by the system,
the process gets invoked. Then, this latter assigns the input
to AnyICWSService Request message. Afterward, it calls the
appropriate operation of the requested service and returns
the needed information. Finally, the web service Response

123

SOCA (2013) 7:217–230 221

message is assigned to the BPEL process Output variable and
then forwarded back to the user.

4 RBL-ICS: role-based licensing model for an inventory
control system web services

In this section, we introduce the RBL-ICS model of our
inventory control system. Initially, we define the RBL-ICS
model; subsequently, we present an excerpt of an XrML-
based license specification for the inventory control system.
We recall that XrML is an XML-based language for license
specification.

4.1 RBL-ICS model definitions

This model includes several components: users, roles, grants,
role hierarchies, user-role assignment, and role-grant assign-
ment relations. Users are assigned to roles, and roles are
assigned to grants. An RBL grant represents the ability to
access a certain system service. A user is permitted to exe-
cute a service activity if he/she is assigned to a role that has
the grant to perform that activity. On the other hand, RBL
roles are structured in a hierarchy.

A: is the identifier of an activity (e.g., order new Prod-
ucts).
R: is the set of roles (e.g., Manager, Supervisor, Employee,
and Customer).
U: is the set of potential users.
G: is the set of grants, (e.g., Execution of an activity).

4.1.1 Definition 1: RBL-ICS grant

Let I C S be our System. An RBL-ICS grant is a tuple (Ai ,
Action), where Ai is the identifier of an activity in I C S and
Action identifies the type of the action that can be performed
on activity Ai . For example, the tuple (Order new Products,
execute) allows the authorized user to execute the “Order new
Products” service provided by the inventory control system.

4.1.2 Definition 2: RBL-ICS role

An RBL-ICS role r is a set of attribute conditions r =
{aci |aci = Attr Namei op Attr V aluei }, where Attr Namei

identifies a user attribute name, op is a comparison or a set
of operators, and Attr V aluei is a value, a set, or a range of
attribute values. Note that the roles r and r ′ might be recog-
nized by the same set of attribute names. However, it is a must
that at least one of the values that the attributes of r and r ′
assume must be different. A user can be assigned to only one
role while two users identified by the same attributes with the
same values are assigned to the same role since we assume

Table 1 RBL-ICS role hierarchy

R

Manager {Employment=Manager, ID=integer of 9 digits,
Password=a string of at most 9 characters}

Employee {Employment=Employee, ID=integer of 9 digits,
Password=a string of at most 9 characters}

Supervisor {Employment=Supervisor, ID=integer of 9 digits,
Password=a string of at most 9 characters}

Customer {Employment=Customer, ID=integer of 9 digits,
Password=a string of at most 9 characters}

Fig. 3 RBL-ICS role hierarchy

that a set of attribute conditions uniquely identifies a role
(as illustrated in Table 1).

4.1.3 Definition 3: RBL-ICS role hierarchy

Let R be a partially ordered set of roles. A role hierarchy
defined over R is the graph of the partial-order relation
between the roles in R. If r, r0 ∈ R and r < r0, then we
say r0 dominates r . For instance, our inventory control sys-
tem consists of four different roles. The highest role is the
Manager which has access to all the available services. The
Supervisor and Employee come next in the hierarchy. They
have less access rights than the Manager but more access
rights than the Customer members. The role hierarchy of
the inventory control system is depicted in Fig. 3.

4.1.4 Definition 4: RBL-ICS user-role assignment relation

Let U be the set of all potential users and R be a partial
ordered set of roles. The RBL-ICS user assignment relation
is the set of attributes U A = {(u, r) ∈ U × R|∀aci =
Attr Namei op Attr V aluei ∈ r, ∃attr j ∈ CredSet (u)1

|attr j = Attr Namei
∧

aci is evaluated to “true” accord-
ing to the value of attr j }. As for the online purchase system,
the set of roles are R={ Manager, Employee, Supervisor,
and Customer}. Assigning users to roles results in a set
of attributes that defines the RBL-inventory control user
assignment relation. For example, in our inventory control

1 Credential Set.

123

222 SOCA (2013) 7:217–230

system, the set of attribute conditions for the Manager role
is r= { Type= “Manager,” ID= a string of 9 characters, Pass-
word= a string of at most 9 characters }; thus, a credential set
of the user u={Type= “Manager”, ID=“Emma,” Password=
“Empass”} will be evaluated as “true” and u is assigned to
Manager .

4.1.5 Definition 5: RBL-ICS user-grant assignment

Let G be the set of grants of the activity A1 supported by
the system, and RG be the set of grant/role assignments.
Thus, the RBL-ICS user-grant assignment relation is the set
of attributes U G= {(u,g) ∈ U x G |∃ (u,r) ∈ UA | (r,g) ∈
RG}. For instance, a grant to order new items is assigned to
Manager by the RG relation. Thus, a user u can order new
items only if he is assigned first to Manager .

5 WS-XrML-AspectBPEL approach

Our approach focuses on enforcing non-functional require-
ments (e.g., security) into web service compositions based
on licensing concept.

In the context of policy specification, several XML-
based usage grammar languages such as XACML [15],
WS-Security [2], XrML [6], or SAML [14] have been devel-
oped for access control, integrity, confidentiality, digital
rights management, authentication, and authorization. They
show their suitability in scenarios where complex and com-
posed security policies must be organized. They also offer
the ability to specify security rules in XML-based docu-
ments(s). XrML is a licensing language used for express-
ing rights. It enables developers to establish the rights and
conditions needed to access digital content and web ser-
vices. On the other hand, AOP provides modularity for mod-
eling crosscutting concerns between web services. Hence,
to achieve our objective, we developed a framework based
on a synergy between eXtensible rights Markup Language
(XrML), aspect-oriented programming (AOP), and web ser-
vice compositions.

Our proposition is constituted of three phases: (1) XrML-
License Checker that validates licenses associated with the
offered activities, (2) XrML-AspectBPEL Generator that
builds automatically the AspectBPEL aspects according to
specified standard description of XrML licenses, and (3)
AspectBPEL Weaver that dynamically enforces security fea-
tures into the BPEL process. The first phase exploits the
license verification requirement. The second allows specify-
ing security concerns in separate XrML components and gen-
erates automatically their corresponding aspects expressed
using our elaborated language AspectBPEL, while the third
phase offers a tool for dynamic weaving of the generated

Fig. 4 License checker

aspects in the BPEL process. In the sequel, we illustrate each
phase.

5.1 WS-XrML for WS-BPEL

Considering the workflow for digital content and services,
it seems that the exchange of rights information between
the workflow entities is needed. XrML is considered as
the most advanced and mature language to specify rights
within licenses. It offers the ability to specify the parties
allowed to use the specified resources as well as their rights
and the terms under which these rights can be exercised.
Its constructs are precise and unambiguous. It exploits the
advantages of the XML technology such as flexibility, exten-
sibility, namespaces, aliases, and schemas. Moreover, it sup-
ports content-centric models such as e-book, and service-
centric models as web services. It is a language that can be
used by anyone owning or even distributing digital contents
like software applications and services to associate licenses
with these assets. Although the use of XrML is limited to dig-
ital works and services, it is a comprehensive rights language
that provides an advanced syntax to describe both simple and
complex business models. Hence, it provides an advantage
over other policy languages which have a complex syntax. In
this context, we opted to adopt it on the BPEL process model,
handling a composition of web services, in order to validate
grants offered with the requested services. As illustrated in
Fig. 4, one of the contributions offered by our proposal is the
decrease of the overhead caused by the security measures
checking. In other words, rather than validating the licenses
at the web services level, the proposed approach includes a
license checker at the BPEL process side. It checks and val-
idates the license grants before the invoke of the requested
service.

Listing 1 depicts a simple XrML license. It contains a
grant that conveys to a principal the right to use a particular
service. Its structure is described as follows:

123

SOCA (2013) 7:217–230 223

Listing 1 XrML License Snippet

[1] <license >
[2] <grant >
[3] <keyHolder >
[4] <info >
[5] <dsig:KeyValue >
[6] <dsig:RSAKeyValue >
[7] <dsig:Modulus >sdgs9gj ...</ dsig:

Modulus >
[8] <dsig:Exponent >YHj87h24jn ...</ dsig

:Exponent >
[9] </dsig:RSAKeyValue >
[10] </dsig:KeyValue >
[11] </info >
[12] </keyHolder >
[13] <!--Right -->
[14] <use/>
[15] <!--Resource -->
[16] <serviceReference >
[17] <wsdl >
[18] <nonSecureIndirect URI="http ://www.

AnyWS.com/wsdlfile.xml"/>
[19] </wsdl >
[20] <service >anyws:WSService </service >
[21] <portType >anyws:WSPortType

</portType >
[22] </serviceReference >
[23] <!--Condition -->
[24] <validityInterval >
[25] <notAfter >2013 -12 -24 T23 :59:59 </

notAfter >
[26] </validityInterval >
[27] </grant >
[28]</ license >

– <KeyHolder >: Identifies the principal of the grant. He
is described as the holder of a specific key. (Line 3 to
Line 12)

– <use >: Represents the right granted to the stated prin-
ciple. (Line 14)

– <serviceReference >: Encapsulates the information
necessary to interact with a service. (Line 16 to Line 22)

– <wsdl >: Identifies a digital resource that specifies the
location of a WSDL definitions element. (Line 17 to Line
19)

– <service >: Specifies the name of a particular WSDL
service that is described in the WSDL definitions
element. (Line 20)

– <portType >: Identifies the service’s port to which the
service reference refers. (Line 21)

– <validityInterval >: Represents the condition that must
be met before the right can be exercised. (Line 24 to
Line 26)

5.2 Dynamic approach for XrML deployment
based on AspectBPEL

Considerable attention has been paid recently to address the
web services security needs. Usually, web services secu-
rity requirements are either embedded statically into their
design/code, or enforced using policy languages. Either
ways, the offered services will become unavailable during
the update procedure of security rules or verification strategy.
This will constitute a bigger problem in compound systems as

of BPEL process. Precisely, any modification in the environ-
ment like updating a partner link (e.g., web service) requires
process deactivation. In this case, not only the concerned web
service activities will be inaccessible but all other web ser-
vices activities of the BPEL process. Although BPEL allows
dynamic binding through endpoint references, it may require
stopping the running BPEL process before redeploying it
since the updates should be done in the web service code
itself. Moreover, BPEL does not support the dynamic adapta-
tion of control flow and data flow in the process. For example,
adding new partners, activities, and variables at runtime is
not supported. Furthermore, when invoking a BPEL process,
security measures get invoked at each web service of the
process. This will render the process heavy and affect its
performance.

In this context, AOP [8,9,12,13,18] can help to address
these issues. It is one of the most prominent paradigms that
investigate the use of aspects for the modularization of cross-
cutting concerns. The integration of non-functional require-
ments (e.g., security) is performed through the definition
of aspects. An aspect is a module that contains pointcut
designators specifying sets of join points. Each join point
identifies one or a set of flow points in the concerned pro-
gram which is in our case the BPEL process. Advices spec-
ifying how to alter the process behavior and when in the
selected join points (i.e., before, after, or around) are acti-
vated at the flow points of interest. The aspect is ultimately
woven (i.e., integrated) within the application code, at run-
time (dynamic weaving) through one of the weaving tech-
nologies (e.g., AspectJ [12]). In addition to our experiments,
many contributions [4,7,10,20] have proven the usefulness
of integrating security features into software using AOP. In
this context, we have elaborated in previous work a lan-
guage called AspectBPEL. Using such technique in asso-
ciation with XrML would enforce the concept of separating
concerns of composite web services.

We present in this paper a contribution between XrML
and AOP to cope with the aforementioned issues. It is
based on implementing security controls independently of
the application logic by specifying the security licenses
using XrML, then generating automatically the correspond-
ing AspectBPEL aspects and weaving them into the BPEL
process using our elaborated framework. The generated
aspects offer the ability to activate dynamically the license
checker (see description in Sect. 6.1.1) and only at the stated
points in the BPEL process.

Some security features require run-time checking. For
instance, license that has to be verified at runtime to check if
the user has the privileges to perform the requested operation.
This goal could be achieved by embedding these features in
BPEL aspects and dynamic update can be performed as well.
In addition, web service security is generally represented as
a specification of policy rules that are written in a specific

123

224 SOCA (2013) 7:217–230

Fig. 5 Approach schema

language. To enhance the dynamic verifications, it is enough
to just link these rules to security aspects where pointcuts and
join points are defined. Through these points, security rules
can be injected in the BPEL process and could be updated
as well, at any time, without the need to modify neither the
business logic nor the web services code.

Figure 5 depicts our proposed approach. It illustrates
the BPEL process where security features are embedded in
AspectBPEL aspects generated automatically by the XrML-
AspectBPEL Generator based on the XrML licenses. The
comparison between Figs. 2 and 5 shows that the licens-
ing verification feature is no longer part of the web services
but rather developed independently within aspects modules,
and hence any modification in the security licenses can
be reflected in the generated AspectBPEL aspects that are
weaved and activated dynamically in the BPEL process.
These aspects may contain direct licenses verification to
be integrated at some identified join points in the BPEL
process, or it may contain an invoke to external web ser-
vice(s) that handles the verification procedure. Examples of
XrML security licenses and AspectBPEL aspects are pre-
sented in Sect. 7.

6 WS-XrML-AspectBPEL architecture
and implementation

In this section, we describe the framework architecture
and implementation. We illustrate also the aforementioned
phases of our approach.

6.1 Framework description

Figure 6 illustrates the interaction between the components
of the proposed framework. As depicted in the figure, secu-
rity requirements are specified into separated components
and expressed using XrML licenses. Afterward, our XrML-
AspectBPEL Generator parses these licenses and generates
their corresponding security BPEL aspects based on the pro-
posed AspectBPEL language. The generated aspects are then

Fig. 6 Framework architecture

conveyed to the AspectBPEL weaver with the selected BPEL
process in order to produce a licensed BPEL process. This lat-
ter communicates with our XrML-License checker in order
to validate the license grants at the process level. Based on the
XrML-License checker response (“1” or “0”), the licensed
BPEL process takes the decision to either grant or deny access
to the resource in question.

6.1.1 XrML-License checker

To overcome the issue of license validation measures over-
head at the web services level, we have developed an XrML-
License checker. Typically, this latter get invoked at the BPEL
process level and only at the stated join points of the gener-
ated aspects. It is developed in Java and contains a method
that starts by parsing the license. Then, it checks whether the
assigned role has the right to invoke the requested service, and
finally, it returns an appropriate message. Using the XrML-
License checker, our proposal provides also dynamism by
offering the ability to validate the license grants at the BPEL
process runtime without the need to stop its deployment once
a license get updated.

6.1.2 XrML-AspectBPEL generator

To generate AspectBPEL aspects from XrML License, we
have developed an XrML parser based on the DOM parser for
XML, using Java language. The parser gets all the resources
as well as their corresponding rights specified in each grant
tag in the license. Subsequently, each combination service-
portType of the resource element is matched to an invoke
activity in the BPEL process side. Then, a location identifier
is generated for each of them and its corresponding behav-
ioral code as well. Each location identifier represents a BPEL
activity (i.e., invoke, assign, or any other activity). It identi-
fies a/set of join point(s) where the behavioral code should
be applied, whereas this latter contains the code (written in
XPath) that will be weaved to the BPEL process before/after
or replacing the previously stated location identifier. The list

123

SOCA (2013) 7:217–230 225

of location identifiers is wrapped between a BeginAspect
statement and an EndAspect statement. The behavioral code
contains a call for the XrML-License Checker that handles
the license verification. For each grant specified in the license,
a loop runs to get the corresponding principal, resource, right,
and condition values. The name of the invoke activities of the
BPEL process can then be simply deductible from the resul-
tant list of combinations service-portType. Practically, the
port type and the operation attributes values of the invoke
activity correspond to the portType and the service attributes
values, respectively.

The generated aspect is written in AspectBPEL language.
It calls dynamically the XrML-License Checker that val-
idates the license grants. It includes also an If condition
forming a break point that determines whether the process
gets to continue its predefined path, or exits, depending on
the checker response. The generated BPEL code encapsu-
lated in the behavioral code is mainly divided into two parts.
The first one assigns to the XrML-License Checker, the role
corresponding to the login information entered by the user as
well as the right and the resource that constitute the invoke
activity in the BPEL process. The XrML-License Checker
parses the license and returns 1 if the user has the right to
access the requested operation. This is done by simply match-
ing the assigned values with the data fetched by the elaborated
parser taking into consideration that the specified condition
should be satisfied. Otherwise, the returned value is 0, while
the second part constituted of the If condition returns an error
message to the client in case the checker response is 0 and
consequently stops the process. Else, it allows the invoke of
the requested service.

6.1.3 AspectBPEL weaver

After elaborating the AspectBPEL language, we have devel-
oped its corresponding framework and weaver. This latter
allows the integration of the generated AspectBPEL aspect
code into the specified BPEL process. It starts by compiling
the AspectBPEL aspects, and then performing the needed
weaving. First, it fetches the insertion point (i.e., before,
after, or replace). Then, it takes the location behavior, which
represents the activity type and activity name where the
behavioral BPEL code will be inserted. We have integrated a
BPEL parser based on the ode.bpel library in the AspectBPEL
framework in order to find the defined join points in the BPEL
process. Once found, the behavioral code will be inserted in
the original code and a message indicating that the weaving
was successfully done will appear in the output console.

6.2 Framework implementation

Our framework, which is illustrated in Fig. 7, offers a
user-friendly environment to perform a binding between

Fig. 7 XrML-AspectBPEL framework

an XrML license and a BPEL process. It allows automat-
ically transforming the XrML license into AspectBPEL
aspect and weaving it into the selected process. To per-
form the hardening process, the user should first select
the “Licenses” menu. A new editor pane appears under
the “Licenses” panel where the XrML license is devel-
oped or loaded. Then, the user has to select the “Gen-
erate Aspect” item to convert the XrML code into an
AspectBPEL aspect. Once this latter is generated, the user
should compile it by simply selecting “Compile Aspect”
from the “AspectBPEL” menu. If a message appears indi-
cating that the compilation was successful, the user can
move to the final step in order to weave the generated aspect
code into the process. He should go to the “AspectBPEL”
menu and select the “Weave Aspect” item. On click,
a dialog box appears, requesting the user to select to
which BPEL process the AspectBPEL aspect code will
be weaved. A “Weaving Completed” message in the con-
sole appears indicating that the weaving was successfully
performed.

123

226 SOCA (2013) 7:217–230

7 Case study: dynamic enforcement of the RBL-ICS
model in the ICS

This section describes the implementation of the RBL-ICS
model illustrating all the procedures as well as the mecha-
nisms presented in our proposed approach for the dynamic
enforcement of XrML-license verification feature in the ICS.

7.1 RBL-ICS XrML specification

Listing 2 outlines a synopsis of the XrML-based license for
the ICS. This listing includes only the grants (Line 7 to Line
29) offered to the employee. Other grants are omitted here
due to space constraints. However, they are set similarly. Each
grant contains the role (Line 8 to Line 17) to which the privi-
leges are certified. These roles are structured in a way that the
root is denoted by Manager. Followed by 2 sub-roles, Super-
visor and Employee, the Manager is granted all the rights
to be performed on the associated resources. The Supervisor
and the Employee roles share the Customer sub-role and are
assigned, respectively, to varName=“Supervisor” and var-
Name=“Employee,” While the Customer is assigned to var-
Name=“Customer.” Each grant encloses the right (Line 19),
the associated resource (Line 22 to Line 24), and the condi-
tion (Line 25 to Line 28) that must be met before the right
can be exercised, designated to each role. For instance, the
varName=“Supervisor” includes the generating invoice that
is valid during certain time interval.

7.2 AspectBPEL aspects realizing the RBL-ICS

In what follows, we describe the generated BPEL secu-
rity aspect realizing the aforementioned XrML license of
the RBL-ICS model. Please note that the syntax and con-
structs of the aspects are specified in AspectBPEL language.
At the beginning, our ApsectBPEL framework compiles the
aspects. It returns a failure message in case any error was
found. Otherwise, a message indicating that the compilation
was successful is returned. Afterward, it weaves the gener-
ated aspect to the selected BPEL process. Our approach has
been tested, and we were successfully able to verify licenses
associated with the offered services at the BPEL process level
during its running time.

Listings 3 and 4 (for space limitations, AspectBPEL aspect
code is divided into 2 parts, (a) and (b)) illustrate an excerpt
of the generated AspectBPEL aspect for the verification of
license associated with ICS services and realizing the XrML
license of Listing 2. For space restriction, the listings depict
only the AspectBPEL code that validates the grants associ-
ated with the GenerateInvoiceVoucher service. The others are
set in similar way. As described in the aforementioned RBL-
ICS model (described in Sect. 4), each user is assigned a role
and its corresponding grant(s). The RBL model reflected by

the XrML license has been generated as AspectBPEL aspect
code. This latter integrates the grants verification before
(Line 3) the execution of any invoke activity whose port
type and operation were specified in the XrML license (Line
4). It begins by assigning the role, right, and resource sub-
jects of the user request (Line 7 to Line 34). Subsequently,
the XrML-License Checker parses the license and checks
if access should be granted or denied. As illustrated in the
listing, the response of the checker is wrapped inside an If
condition (Line 38 to Line 54) that checks the returned value.
If it is equal to 1, the BPEL process continues its execution
by invoking the appropriate web service for the requested
service. Otherwise, it returns an error message (Line 40 to
Line 55) and the BPEL process exits.

Listing 2 Excerpt of XrML-based license for ICS

[1]< license licenseId =" ICSLicense" xmlns ="
http ://www.xrml.org/schema /2001/11/
xrml2core" ...>

[2] <title >ICS License </title >
[3] <!--Grants set for the Manager -->
[4] <!--Grants set for the Supervisor -->
[5] <!--Grants set for the Customer -->
[6] ...
[7] <grant >
[8] <forAll varName =" Employee">
[9] <everyone >
[10] <trustedIssuer ><dsig:KeyInfo ><dsig:

KeyValue >
[11] <dsig:RSAKeyValue >
[12] <dsig:Modulus >sdgs9gj ...</ dsig:

Modulus >
[13] <dsig:Exponent >YHj87h24jn ...</

dsig:Exponent >
[14] </dsig:RSAKeyValue >
[15] </dsig:KeyValue ></dsig:KeyInfo ></

trustedIssuer >
[16] </everyone >
[17] </forAll >
[18] <principal varRef = "Employee"/>
[19] <use/> <!--Right -->
[20] <serviceReference > <!--Resource -->
[21] <wsdl > <nonSecureIndirect URI="http ://

localhost :8080/ ode/processes/ICS/
ICSwsdlfile.xml"/> </wsdl >

[22] <service >GenerateInvoiceVoucher </
service >

[23] <portType >ns:ICS </portType >
[24] </serviceReference >
[25] <validityInterval > <!--Condition -->
[26] <notBefore >2011 -11 -01 T00 :00:00 </

notBefore >
[27] <notAfter >2013 -02 -01 T00 :00:00 </

notAfter >
[28] </validityInterval >
[29] </grant >
[30] <issuer >
[31] <dsig:Signature ><dsig:KeyInfo ><dsig:

KeyValue >
[32] <dsig:RSAKeyValue >
[33] <dsig:Modulus >sdgs9gj?</dsig:

Modulus >
[34] <dsig:Exponent >YHj87h24jn?</dsig:

Exponent >
[35] </dsig:RSAKeyValue >
[36] </dsig:KeyValue ></dsig:KeyInfo ></dsig:

Signature >
[37] <details >
[38] <timeOfIssue >2011 -10 -26 T16 :20:01 </

timeOfIssue >
[39] </details >
[40] </issuer >
[41]</ license >

123

SOCA (2013) 7:217–230 227

Listing 3 Excerpt of Generated AspectBPEL Aspect for License Grants
Validation (a)

[1] Aspect GeneratedGrantsValidationAspect
[2] BeginAspect
[3] Before
[4] Invoke <GenerateInvoiceVoucher >
[5] BeginBehavior
[6] <bpel:sequence >
[7] <bpel:assign validate ="no" name="

MyAssign">
[8] <bpel:copy > <bpel:from > <bpel:literal >
[9] <impl:checkAccess xmlns:impl="http ://

t320.open.ac.uk">
[10] <impl:Principal >impl:Principal </impl:

Principal >
[11] <impl:Action >impl:Action </impl:Action

>
[12] <impl:Resource >impl:Resource </impl:

Resource >
[13] </impl:checkAccess >
[14] </bpel:literal > </bpel:from >
[15] <bpel:to variable =" PartnerLinkRequest"

part=" parameters">
[16] </bpel:to >
[17] </bpel:copy >
[18] <bpel:copy >
[19] <bpel:from part=" payload" variable ="

input"> <bpel:query > <![CDATA[tns:input
]]></bpel:query > </bpel:from >

[20] <bpel:to part=" parameters" variable ="
PartnerLinkRequest"> <bpel:query > <![
CDATA[ns:Principal]]> </bpel:query > </
bpel:to >

[21] </bpel:copy >
[22] <bpel:copy >
[23] <bpel:from > <![CDATA [" GenerateInvoice

"]]> </bpel:from ><bpel:to part="
parameters" variable =" PartnerLinkRequest
">

[24] <bpel:query > <![CDATA[ns:Right]]> </
bpel:query > </bpel:to >

[25] </bpel:copy >
[26] <bpel:copy >
[27] <bpel:from > <![CDATA ["ICS"]]> </bpel:

from > <bpel:to part=" parameters" variable
=" PartnerLinkRequest">

[28] <bpel:query > <![CDATA[ns:Service]]> </
bpel:query > </bpel:to >

[29] </bpel:copy >
[30] <bpel:copy >

7.3 Discussion and experimental results

Our approach produces a licensed BPEL process as illus-
trated in Fig. 9 (due to the big size of the BPEL process,
we show only one service, which we call AnyICSWSSer-
vice). To reach that goal, it starts first by generating automat-
ically the license grants validation aspect in Listing 3 from
the XrML license in Listing 2, and then weaving them into the
BPEL process of the inventory control system presented in
Fig. 2. The resulted BPEL process not only provides dynamic
license verification feature for the inventory control system
but also decreases the overhead of security measures verifi-
cation at the web services level. The licensed BPEL process
begins by receiving the client role formulated from his login
information. It assigns the user’s role besides the requested
service to the XrML-License checker. Once this latter gets
called, it parses the license and checks whether the client

is granted to invoke the requested service. If the access is
granted, the process proceeds and invokes the inventory con-
trol system web service AnyICSWS and returns the user
requested service. Otherwise, the process assigns the web
service response message to the BPEL output variable, for-
ward it back to the user, and stops.

After performing an extensive testing, we were able to
demonstrate the utility and the feasibility of our proposition.
First, we got the ability to successfully integrate the RBL-ICS
security features in the corresponding original BPEL process
code. Then, we applied some modifications on the license
which have been effectively and dynamically reflected in its
corresponding generated aspects. Finally, we were capable
to ensure that the original functionalities of the ICS have not
been altered after the modification has been applied dynam-
ically onto the BPEL process.

Listing 4 Excerpt of Generated AspectBPEL Aspect for License Grants
Validation (b)

[31] <bpel:from > <![CDATA ["ICS"]]> </bpel:
from > <bpel:to part=" parameters" variable
=" PartnerLinkRequest">

[32] <bpel:query >
<![CDATA[ns:PortType]]>
</bpel:query > </bpel:to >
[33] </bpel:copy >
[34] </bpel:assign >
[35] <bpel:invoke name=" MyInvoke"

partnerLink =" PartnerLink" operation ="
checkAccess" portType ="ns:Evaluator"

[36] inputVariable =" PartnerLinkRequest"
outputVariable =" PartnerLinkResponse ">

[37] </bpel:invoke >
[38] <bpel:if name="If" xmlns:http="urn:http:

namespace">
[39] <bpel:condition >
<![CDATA[$PartnerLinkResponse.parameters=

"0"]]></ bpel:condition >
[40] <bpel:sequence name=" Sequence">
[41] <bpel:assign validate ="no" name="

AnotherAssign">
[42] <bpel:copy >
[43] <bpel:from > <bpel:literal > <tns:

MyProcessResponse xmlns:tns="http ://
myprocess.localhost"> <tns:result >tns:
result </tns:result >

[44] </tns:MyProcessResponse > </bpel:
literal >

[45] </bpel:from > <bpel:to variable ="
output" part=" payload"> </bpel:to >

[46] </bpel:copy > <bpel:copy >
[47] <bpel:from > <![CDATA [" Access Denied

"]]> </bpel:from > <bpel:to part=" payload"
variable =" output"> <bpel:query > <![CDATA

[tns:result]]>
[48] </bpel:query >
[49] </bpel:to>
[50] </bpel:copy >
[51] </bpel:assign >
[52] <bpel:reply name=" Reply" partnerLink ="

client" operation =" process" variable ="
output"></bpel:reply >

[53] </bpel:sequence >
[54] </bpel:if >
[55] </bpel:sequence >
[56] EndBehavior
[57] EndAspect

123

228 SOCA (2013) 7:217–230

8 Performance analysis

This section summarizes the results of performance analy-
sis conducted on the BPEL process running in three different
scenarios: A BPEL process without license verification (LV),
a BPEL process with LV (license verification) at the web ser-
vices level, and a BPEL process that runs with AspectBPEL
aspect including a call to our XrML-License checker. Prac-
tically, in the first scenario, anyone can invoke the BPEL
process activities since it does not contain license grants
validation. In the second one, the license checking property is
integrated in the web services code, while in the third one, this
property is centralized at the BPEL level that calls our XrML-
License checker before invoking the requested service.

Table 2 shows how the size of the .bpel and .wsdl files
of the inventory control system varies from one scenario
to another. It shows that the size of the process (i.e., num-
ber of lines of the process code) with AspectBPEL license
verification is the biggest, ascribe that to the AspectBPEL
aspect code integrated in it. However, in the rest of this
analysis, it will be obvious that this overload does not
have a negative side effect on the BPEL performance.
The first chart of Fig. 8 shows the variation in the exe-
cution time (time taken to execute/invoke the services) of
the BPEL process in the aforementioned scenarios with
respect to the number of invokes it contains. This lat-
ter refers to the number of services that are called in the
ICS BPEL process. The stated values were measured using
the Visual Studio profiling tool. As any profiler, this lat-
ter allows to measure the behavior of a program as it exe-
cutes (for instance, the duration of function calls). As the
results vary from one call to another, we decided to cal-

culate their average reducing the margin of deviation. As
shown in this chart, the non-licensed BPEL process (BPEL
without LV) enclosing 10 invokes runs in an average of
7,776 ms and reaches 68,875 ms for 100 invoke activities.
Conversely, the BPEL process of 10 invokes with the license
verification on the web services side (BPEL with WS-
LV) takes up to 9393 ms and comes to 85,188 ms when
enclosing 100 invoke activities. Nevertheless, the BPEL
process with AspectBPEL-LV runs in an average of 9,136 ms
for 10 web services invoke and takes up to 71,562 ms
for 100 web services invoke. In the second scenario, the
license is embedded within the business logic of the web
service; this will lead to invoke it at each service call (even
if the service is not included in the license of the web ser-

Table 2 Size of the ICSProcess BPEL and WSDL File

Without LV WebService LV AspectBPEL-LV

ICSProcess.bpel 170 Lines 259 Lines 268 Lines

ICSProcess.wsdl 69 Lines 85 Lines 74 Lines

Fig. 8 Performance analysis

vice). However, in the last scenario, we can specify where to
integrate the security (license verification) code at the BPEL
level. So the code will be inserted and called only at the
stated join point decreasing the overhead of verification at
the web services level. Therefore, the execution time in the
third case (overhead at the web services level was decreased)
is significantly less than the one in the second case. The
chart reflects this by showing that the line illustrating the exe-
cution time of the BPEL process with AspectBPEL license
verification is almost in congruence with the one of the non-
licensed process. This proves also that the overload of the
AspectBPEL code is not affecting the performance of the
BPEL process.

The performance analysis could not be accomplished
without measuring the compilation and the weaving time
of the AspectBPEL-LV aspect (i.e., time taken to compile
and integrate the AspectBPEL aspect code in the process).
Therefore, using the Eclipse Test and Performance Tools
Platform (TPTP), we have performed this test, and the
results are shown in the second and the third chart of
Fig. 8. The compilation and the weaving time are in ms

123

SOCA (2013) 7:217–230 229

Fig. 9 ICS licensed BPEL process

while the aspect size is measured in terms of the number
of pointcuts presented in it. As shown in these charts, it
takes only 1540 ms to compile an AspectBPEL aspect of
30 pointcuts and just 2,500 ms to weave it in the BPEL
process.

All above results not only reflect how fast the compila-
tion and the weaving functions can be but also they prove
that a BPEL process with AspectBPEL license verification
still by far faster than a BPEL process with license verifi-
cation implemented on the web services side. For example,
assuming that we have a BPEL process enclosing 25 invoke
activities that needs an AspectBPEL aspect of 25 pointcuts.
That means, different security behaviors (i.e., license verifi-
cation) for each invoke activity. The total running time of this
process is equal to the compilation time plus the weaving time
of the AspectBPEL aspect plus the runtime of the process.
In this example, it is = 1103 + 2140 + 15356 = 18,599 ms
<19,833 ms which is the running time of the BPEL having
the license verification property implemented at the web ser-
vices level.

9 Conclusion

We presented in this paper a new approach that is based on
a synergy between the licensing concept offered by XrML,
aspect-oriented programming (AOP), and BPEL process of
composite web services. It exploits the XrML paradigm and
the aspect concept offered by AOP to cater for the needs
of the web services composition into a BPEL process. It
offers the ability to define grants within licenses, associate
them with the offered activities, and transform them auto-
matically into AspectBPEL aspects. These aspects offer a
dynamic procedure to include and update the non-functional
requirements such as license grants validation into a BPEL
process, at runtime, and without affecting its business logic.
They allow also a real-time license validation at the BPEL
process level. Moreover, through the modularity offered by
the aspect concept, business work flow and security concerns
can be developed separately as different components which
allow the integration and the modification of the web ser-
vices composition of the BPEL process at run time without
the necessity to stop the process.

References

1. Ardagna CA, Damiani E, De Capitani di Vimercati S, Samarati
P (2006) A web service architecture for enforcing access control
policies. Electron Notes Theor Comput Sci 142:47–62

2. Atkinson B et al. Web services security (WS-Security). http://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=wss

3. Bhatti R, Joshi J, Bertino E, Ghafoor A (2003) Access control in
dynamic XML-based web-services with X-RBAC. In: Proceedings
of the international conference on web services (ICWS03), pp 243–
249

4. Bodkin R (2004) Enterprise security aspects. In: Proceedings of
the AOSD 04 workshop on AOSD technology for application-level
security (AOSD04:AOSDSEC)

5. Charfi A, Mezini M (2004) Aspect-oriented web service composi-
tion with AO4BPEL. In ECOWS04

6. ContentGuard. XrML The digital rights language for trusted con-
tent and services. http://www.xrml.org/

7. DeWin B (2004) Engineering application level security through
aspect oriented software development. PhD thesis, Katholieke
Universiteit Leuven

8. Evermann J (2007) A meta-level specification and profile for
AspectJ in UML. J Object Technol 6(7):27–49

9. Fuentes L, Sanchez P (2006) Elaborating UML 2.0 profiles for AO
design. In: Proceedings of the international workshop on aspect-
oriented modeling

10. Huang M, Wang C, Zhang L (2004) Toward a reusable and
generic security aspect library. In: Proceedings of the AOSD 04
workshop on AOSD technology for application level security
(AOSD04:AOSDSEC)

11. Ken North Computing. XML and web services: message process-
ing vulnerabilities. http://www.webservicessummit.com/Articles/
MessagingThreats.htm

12. Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J,
Griswold WG (2001) An overview of AspectJ. In: Proceedings
of the 15th european conference on object-oriented programming
(ECOOP01), pp 327–353, London, UK. Springer

123

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.xrml.org/
http://www.webservicessummit.com/Articles/MessagingThreats.htm
http://www.webservicessummit.com/Articles/MessagingThreats.htm

230 SOCA (2013) 7:217–230

13. Kiczales G, Lamping J, Menhdhekar A, Maeda Ch, Lopes C,
Loingtier J-M, Irwin J (1997) Aspect-oriented programming. In:
Akÿsit M, Matsuoka S (eds) In: Proceedings european conference
on object-oriented programming, vol. 1241, pp. 220–242. Springer,
Berlin

14. Lockhart B et al. OASIS security services TC (SAML). http://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=security

15. Moses T: OASIS eXtensible access control markup lan-
guage(XACML), OASIS standard 2.0. http://www.oasis-open.org/
committees/xacml/

16. Nolan P (2004) Understand WS-Policy processing. IBM Corpora-
tion, Technical report

17. Paci F, Bertino E, Crampton J (2008) An access-control framework
for WS-BPEL. Int J Web Serv Res 5(3):20–43

18. Pavlich-Mariscal J, Michel L, Demurjian S (2007) Enhancing UML
to model custom security aspects. In: Proceedings of the 11th inter-
national workshop on aspect-oriented modeling AOM@AOSD07

19. Schlimmer J (2004) Web services policy framework (WS-
Policy). http://www-128.ibm.com/developerworks/webservices/
library/specification/ws-polfram/

20. Shah V (2003) An aspect-oriented security assurance solution,
Technical Report AFRL-IF-RS-TR-2003-254, Cigital Labs

21. Tonella P, Di Francescomarino C (2009) Cooperative aspect ori-
ented programming for executable business processes. In: Proceed-
ings of The the 2009 ICSE workshop on principles of engineering
service oriented systems., Vancouver, Canada

123

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-polfram/
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-polfram/

	XrML-RBLicensing approach adapted to the BPEL process of composite web services
	Abstract
	1 Introduction
	2 Related work
	3 BPEL process architecture of the inventory control system web services
	3.1 Inventory control system overview
	3.2 BPEL process architecture

	4 RBL-ICS: role-based licensing model for an inventory control system web services
	4.1 RBL-ICS model definitions
	4.1.1 Definition 1: RBL-ICS grant
	4.1.2 Definition 2: RBL-ICS role
	4.1.3 Definition 3: RBL-ICS role hierarchy
	4.1.4 Definition 4: RBL-ICS user-role assignment relation
	4.1.5 Definition 5: RBL-ICS user-grant assignment

	5 WS-XrML-AspectBPEL approach
	5.1 WS-XrML for WS-BPEL
	5.2 Dynamic approach for XrML deployment based on AspectBPEL

	6 WS-XrML-AspectBPEL architecture and implementation
	6.1 Framework description
	6.1.1 XrML-License checker
	6.1.2 XrML-AspectBPEL generator
	6.1.3 AspectBPEL weaver

	6.2 Framework implementation

	7 Case study: dynamic enforcement of the RBL-ICS model in the ICS
	7.1 RBL-ICS XrML specification
	7.2 AspectBPEL aspects realizing the RBL-ICS
	7.3 Discussion and experimental results

	8 Performance analysis
	9 Conclusion
	References

